DeepSeek-R1模型1.5b、7b、8b、14b、32b、70b和671b有啥区别?

deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b有啥区别?码笔记mabiji.com分享:1.5B、7B、8B、14B、32B、70B是蒸馏后的小模型,671B是基础大模型,它们的区别主要体现在参数规模、模型容量、性能表现、准确性、训练成本、推理成本和不同使用场景:

deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b

参数规模

参数规模的区别,模型越大参数数量逐渐增多,参数数量越多,模型能够学习和表示的知识就越丰富,理论上可以处理更复杂的任务,对各种语言现象和语义理解的能力也更强。比如在回答复杂的逻辑推理问题、处理长文本上下文信息时,70B的模型可能会比1.5B的模型表现得更出色。

  • 671B:参数数量最多,模型容量极大,能够学习和记忆海量的知识与信息,对各种复杂语言模式和语义关系的捕捉能力最强。
  • 1.5B-70B:参数数量相对少很多,模型容量依次递增,捕捉语言知识和语义关系的能力也逐渐增强,但整体不如671B模型丰富。

准确性和泛化能力

随着模型规模的增大,在各种基准测试和实际应用中的准确性通常会有所提高。例如在回答事实性问题、进行文本生成等任务时,大规模的模型如 70B、32B 可能更容易给出准确和合理的答案,并且对于未曾见过的数据和任务的泛化能力也更强。小模型如 1.5B、7B 在一些简单任务上可能表现尚可,但遇到复杂或罕见的问题时,准确性可能会降低。

  • 671B:在各类任务上的准确性通常更高,如在数学推理、复杂逻辑问题解决、长文本理解与生成等方面,能更准确地给出答案和合理的解释。
  • 1.5B-70B:随着参数增加准确性逐步提升,但小参数模型在面对复杂任务或罕见问题时,准确性相对较差,如 1.5B、7B、8B 模型可能在一些简单任务上表现尚可,但遇到复杂问题容易出错。

训练成本

模型参数越多,训练所需的计算资源、时间和数据量就越大。训练70B的模型需要大量的GPU计算资源和更长的训练时间,相比之下,1.5B的模型训练成本要低得多。

  • 671B:训练需要大量的计算资源,如众多的高性能 GPU,训练时间极长,并且需要海量的数据来支撑,训练成本极高。
  • 1.5B-70B:训练所需的计算资源和时间相对少很多,对数据量的需求也相对较小,训练成本较低。

推理成本

推理成本在实际应用中,推理阶段大模型需要更多的内存和计算时间来生成结果。例如在部署到本地设备或实时交互场景中,1.5B、7B等较小模型可能更容易满足低延迟、低功耗的要求,而 70B、32B等大模型可能需要更高性能的硬件支持,或者在推理时采用量化等技术来降低资源需求。

  • 671B:推理时需要更多的内存来加载模型参数,生成结果的计算时间也较长,对硬件性能要求很高。
  • 1.5B-70B:在推理时对硬件要求相对较低,加载速度更快,生成结果的时间更短,能更快速地给出响应。

适用场景

轻量级应用,需要快速响应需求可以选择1.5B、7B 这样的小模型可以快速加载和运行,能够在较短时间内给出结果,满足用户的即时需求,小模型适合一些对响应速度要求高、硬件资源有限的场景,如手机端的智能助手、简单的文本生成工具等;在科研、学术研究、专业内容创作等对准确性和深度要求较高的领域,选择70B、32B等大模型更适合。

  • 671B:适用于对准确性和性能要求极高、对成本不敏感的场景,如大型科研机构进行前沿科学研究、大型企业进行复杂的商业决策分析等。
  • 1.5B-7B:适合对响应速度要求高、硬件资源有限的场景,如移动端的简单智能助手、轻量级的文本生成工具等,可快速加载和运行。
  • 8B-14B:可用于一些对模型性能有一定要求,但又没有超高性能硬件支持的场景,如小型企业的日常文本处理、普通的智能客服等。
  • 32B-70B:能满足一些对准确性有较高要求,同时硬件条件相对较好的场景,如专业领域的知识问答系统、中等规模的内容创作平台等。

关于DeepSeek大模型费用价格,请参考这篇文章:DeepSeek模型价格:R1+V3最新收费标准,低至0.1元百万tokens

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/963533.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【TCP协议】流量控制 滑动窗口 拥塞控制

目录 说明: 流量控制 为什么要流量控制 什么是流量控制 如何控制流量:16位窗口大小 如果主机 B 一直没空间呢?标志位 PSH 滑动窗口:全面认识序号和确认序号 为什么需要滑动窗口? 理解滑动窗口 序号和确认序号…

K8S集群架构及主机准备

本次集群部署主机分布K8S集群主机配置主机静态IP设置主机名解析ipvs管理工具安装及模块加载主机系统升级主机间免密登录配置主机基础配置完后最好做个快照备份 2台负载均衡器 Haproxy高可用keepalived3台k8s master节点5台工作节点(至少2及以上)本次集群部署主机分布 K8S集群主…

三、js笔记

(一)JavaScript概述 1、发展历史 ScriptEase.(客户端执行的语言):1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中).后将其改名ScriptEase.(客户端执行的语言)Javascript:Netscape(网景)接收Nombas的理念,(Brendan Eich)在其Netscape Navigat…

穷举vs暴搜vs深搜vs回溯vs剪枝系列一>单词搜索

题解如下 题目:解析决策树:代码设计: 代码: 题目: 解析 决策树: 代码设计: 代码: class Solution {private boolean[][] visit;//标记使用过的数据int m,n;//行,列char…

使用Pygame制作“圣诞树”

1. 前言 圣诞节到来之际,来给自己写一个圣诞树小动画吧!我们可以利用 Pygame 的绘图功能,轻松地在 2D 屏幕上绘制各种几何形状,并为圣诞树加上灯光闪烁、装饰品等效果。本篇将带领你实现一个简易版本的“屏幕圣诞树”&#xff0c…

Windows电脑本地部署运行DeepSeek R1大模型(基于Ollama和Chatbox)

文章目录 一、环境准备二、安装Ollama2.1 访问Ollama官方网站2.2 下载适用于Windows的安装包2.3 安装Ollama安装包2.4 指定Ollama安装目录2.5 指定Ollama的大模型的存储目录 三、选择DeepSeek R1模型四、下载并运行DeepSeek R1模型五、使用Chatbox进行交互5.1 下载Chatbox安装包…

《AI大模型开发笔记》DeepSeek技术创新点

一、DeepSeek横空出世 DeepSeek V3 以颠覆性技术架构创新强势破局!革命性的上下文处理机制实现长文本推理成本断崖式下降,综合算力需求锐减90%,开启高效 AI 新纪元! 最新开源的 DeepSeek V3模型不仅以顶尖基准测试成绩比肩业界 …

【深度学习】softmax回归的从零开始实现

softmax回归的从零开始实现 (就像我们从零开始实现线性回归一样,)我们认为softmax回归也是重要的基础,因此(应该知道实现softmax回归的细节)。 本节我们将使用Fashion-MNIST数据集,并设置数据迭代器的批量大小为256。 import torch from IP…

python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配

【1】引言 前序学习了图像的常规读取和基本按位操作技巧,相关文章包括且不限于: python学opencv|读取图像-CSDN博客 python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客…

如果通过认证方式调用Sf的api

导读 OAuth 2.0:是一个开放的授权框架,当用户想要访问Service Provider提供的资源时,OAuth客户端可以从IdP(Identity Provider)获得授权而不需要获取用户名和密码就可以访问该资源题。 作者:vivi,来源:osinnovation …

SpringBoot 整合 SpringMVC:SpringMVC的注解管理

分类&#xff1a; 中央转发器(DispatcherServlet)控制器视图解析器静态资源访问消息转化器格式化静态资源管理 中央转发器&#xff1a; 中央转发器被 SpringBoot 自动接管&#xff0c;不需要我们在 web.xml 中配置&#xff1a; <servlet><servlet-name>chapter2&l…

【含文档+PPT+源码】基于微信小程序农家乐美食餐厅预约推广系统

项目介绍 本课程演示的是一款基于微信小程序农家乐美食餐厅预约推广系统&#xff0c;主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的 Java 学习者。 1.包含&#xff1a;项目源码、项目文档、数据库脚本、软件工具等所有资料 2.带你从零开始部署运行本套系统 …

什么是门控循环单元?

一、概念 门控循环单元&#xff08;Gated Recurrent Unit&#xff0c;GRU&#xff09;是一种改进的循环神经网络&#xff08;RNN&#xff09;&#xff0c;由Cho等人在2014年提出。GRU是LSTM的简化版本&#xff0c;通过减少门的数量和简化结构&#xff0c;保留了LSTM的长时间依赖…

基于深度学习的输电线路缺陷检测算法研究(论文+源码)

输电线路关键部件的缺陷检测对于电网安全运行至关重要&#xff0c;传统方法存在效率低、准确性不高等问题。本研究探讨了利用深度学习技术进行输电线路关键组件的缺陷检测&#xff0c;目的是提升检测的效率与准确度。选用了YOLOv8模型作为基础&#xff0c;并通过加入CA注意力机…

【LLM-agent】(task6)构建教程编写智能体

note 构建教程编写智能体 文章目录 note一、功能需求二、相关代码&#xff08;1&#xff09;定义生成教程的目录 Action 类&#xff08;2&#xff09;定义生成教程内容的 Action 类&#xff08;3&#xff09;定义教程编写智能体&#xff08;4&#xff09;交互式操作调用教程编…

C++游戏开发实战:从引擎架构到物理碰撞

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 1. 引言 C 是游戏开发中最受欢迎的编程语言之一&#xff0c;因其高性能、低延迟和强大的底层控制能力&#xff0c;被广泛用于游戏…

Time Constant | RC、RL 和 RLC 电路中的时间常数

注&#xff1a;本文为 “Time Constant” 相关文章合辑。 机翻&#xff0c;未校。 How To Find The Time Constant in RC and RL Circuits June 8, 2024 &#x1f4a1; Key learnings: 关键学习点&#xff1a; Time Constant Definition: The time constant (τ) is define…

DeepSeek Janus-Pro:多模态AI模型的突破与创新

近年来&#xff0c;人工智能领域取得了显著的进展&#xff0c;尤其是在多模态模型&#xff08;Multimodal Models&#xff09;方面。多模态模型能够同时处理和理解文本、图像等多种类型的数据&#xff0c;极大地扩展了AI的应用场景。DeepSeek(DeepSeek-V3 深度剖析&#xff1a;…

w188校园商铺管理系统设计与实现

&#x1f64a;作者简介&#xff1a;多年一线开发工作经验&#xff0c;原创团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339;赠送计算机毕业设计600个选题excel文…

DeepSeek R1本地化部署 Ollama + Chatbox 打造最强 AI 工具

&#x1f308; 个人主页&#xff1a;Zfox_ &#x1f525; 系列专栏&#xff1a;Linux 目录 一&#xff1a;&#x1f525; Ollama &#x1f98b; 下载 Ollama&#x1f98b; 选择模型&#x1f98b; 运行模型&#x1f98b; 使用 && 测试 二&#xff1a;&#x1f525; Chat…