Python机器学习、深度学习提升气象、海洋、水文领域实践应用

Python是功能强大、免费、开源,实现面向对象的编程语言,能够在不同操作系统和平台使用,简洁的语法和解释性语言使其成为理想的脚本语言。除了标准库,还有丰富的第三方库,Python在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能。上述优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为气象、海洋和水文等地学领域的主流编程语言之一。

点击查看原文icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247550104&idx=4&sn=2dfc61f4d98ef7056750a852a3d8acd6&chksm=ce64ee73f9136765407b6334a1518ca54e91c91ab946f743f0e164a7271705e551b895cfb4d6&token=224136675&lang=zh_CN#rd

专题一

Python软件的安装及入门

1.1 Python背景及其在气象中的应用

1.2 Anaconda解释和安装以及Jupyter配置

1.3 Python基础语法

专题二

气象常用科学计算库

2.1 Numpy库

2.2 Pandas库

2.4 Xarray库

专题三

气象海洋常用可视化库

3.1可视化库介绍Matplotlib、Cartopy等

3.2 基础绘图

(1)折线图绘制

(2)散点图绘制

(3)填色/等值线

(4)流场矢量图

专题四

爬虫和气象海洋数据

(1)Request库的介绍

(2)爬取中央气象台天气图

(3)FNL资料爬取

(4) ERA5下载

专题五

气象海洋常用插值方法

(1)规则网格数据插值到站点

(2)径向基函数RBF插值

(3)反距离权重IDW插值

(4)克里金Kriging插值

 

专题六

机器学习基础理论和实操

6.1 机器学习基础原理

(1)机器学习概论

(2)集成学习(Bagging和Boosting)

(3)常用模型原理(随机森林、Adaboost、GBDT、Xgboost、lightGBM)

6.2 机器学习库scikit-learn

(1)sklearn的简介

(2)sklearn完成分类任务

(3)sklearn完成回归任务

专题七

机器学习的应用实例

本专题,在详细讲解机器学习常用的两类集成学习算法,Bagging和Boosting,对两类算法及其常用代表模型深入讲解的基础上,结合三个学习个例,并串讲一些机器学习常用技巧,将理论与实践结合。

7.1机器学习与深度学习在气象中的应用

AI在气象模式订正、短临预报、气候预测等场景的应用

7.2 GFS数值模式的风速预报订正

(1)随机森林挑选重要特征

(2)K近邻和决策树模型订正风速

(3)梯度提升决策树GBDT订正风速

(4)模型评估与对比

7.3 台风预报数据智能订正

(1)CMA台风预报数据集介绍以及预处理

(2)随机森林模型订正台风预报

(3)XGBoost模型订正台风预报

(4)台风“烟花”预报效果检验

7.4 机器学习预测风电场的风功率

(1)lightGBM模型预测风功率

(2)调参利器—网格搜索GridSearch于K折验证

 

专题八

深度学习基础理论和实操

8.1 深度学习基本理论

深度学习基本理论知识讲解,深入了解机器学习的基础理论和工作原理,掌握如何构建和优化神经网络模型(如人工神经网络ANN,卷积神经网络CNN、循环神经网络RNN等),提高对现有深度学习算法和技术的理解和应用能力,更好地应对后续海洋气象相关领域的实际问题和应用。

8.2 Pytorch库

(1)sklearn介绍、常用功能和机器学习方法

学习经典机器学习库sklearn的常用功能,如鸢尾花、手写字体等公开数据集的获取、划分训练集和测试集、模型搭建和模型验证等。

(2) pytorch介绍、搭建 模型

学习目前流行的深度学习框架pytorch,了解张量tensor、自动求导、梯度提升等,以BP神经网络学习sin函数为例,掌握如何搭建单层和多层神经网络,以及如何使用GPU进行模型运算。

专题九

深度学习的应用实例

本专题,在学习使用ANN预测浅水方程的基础上,进一步掌握如何使用PINN方法,将动力方程加入模型中,缓解深度学习的物理解释性差的问题。此外,气象数据是典型的时空数据,学习经典的时序预测方法LSTM,以及空间卷积算法UNET。

9.1深度学习预测浅水方程模式

(1)浅水模型介绍和数据获取

(2) 传统神经网络ANN学习浅水方程

(3)物理约束网络PINN学习浅水方程

9.2 LSTM方法预测ENSO

(4)ENSO简介及数据介绍

(5)LSTM方法原理介绍

(6)LSTM方法预测气象序列数据

9.3深度学习—卷积网络

(1)卷积神经网络介绍

(2)Unet进行雷达回波的预测

 

专题十

EOF统计分析

10.1 EOF基础和eofs库的介绍

10.2 EOF分析海表面温度数据

(1)SST数据计算距平,去趋势

(2)SST进行EOF分析,可视化

 

专题十一

模式后处理

11.1 WRF模式后处理

(1)wrf-python库介绍

(2)提取站点数据

(3)500hPa形式场绘制

(4)垂直剖面图——雷达反射率为例

11.2 ROMS模式后处理

(1)xarray为例操作ROMS输出数据

(2)垂直坐标转换,S坐标转深度坐标

(3)垂直剖面绘制

(4)水平填色图绘制

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/146366.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Latex在图表标题里面引用参考文献时,出现参考文献顺序混乱的解决方案(适用于bibtex)

问题描述 如果你在figure环境的\caption或\captionof中使用\cite,但是参考文献的顺序仍然不正确,可能是因为LaTeX的处理流程导致了这个问题。 比如图片在第二章节但里面引用了参考文献,在文章末尾的参考文献第二章图片的参考文献顺序&#…

微服务基础,分布式核心,常见微服务矿建,SpringCloud概述,搭建SpringCloud微服务项目详细步骤,含源代码

微服务基础 系统架构的演变 随着会联网的发展,网站应用的规模不断扩大,常规的应用架构已经无法应对,分布式服务架构以及微服务架构势在必行,必须一个治理系统确保架构有条不紊的演进 单体应用框架 Web应用程序发展的早期&…

如何把小米路由器刷入OpenWRT系统并通过内网穿透工具实现公网远程访问

小米路由器4A千兆版刷入OpenWRT并远程访问 文章目录 小米路由器4A千兆版刷入OpenWRT并远程访问前言1. 安装Python和需要的库2. 使用 OpenWRTInvasion 破解路由器3. 备份当前分区并刷入新的Breed4. 安装cpolar内网穿透4.1 注册账号4.2 下载cpolar客户端4.3 登录cpolar web ui管理…

【机器学习】决策树算法理论:算法原理、信息熵、信息增益、预剪枝、后剪枝、算法选择

1. 决策树概念 通过不断的划分条件来进行分类,决策树最关键的是找出那些对结果影响最大的条件,放到前面。 我举个列子来帮助大家理解,我现在给我女儿介绍了一个相亲对象,她根据下面这张决策树图来进行选择。比如年龄是女儿择偶更…

vim批量多行缩进调整

网上其他教程&#xff1a; ctrl v 或者 v进行visual模式按方向键<&#xff0c;>调整光标位置选中缩进的行Shift > &#xff08;或者 Shift < &#xff09;进行左右缩进。 我只想说&#xff0c;乱七八糟&#xff0c;根本不管用 本文教程&#xff1a; 增加缩进…

Outlook关闭过去事件的提醒

Outlook关闭过去事件的提醒 故障现象 最近Outlook中推出的新功能让我们可以选择自动关闭过去事件的提醒。 目前这个功能暂时只向当月通道的Office 365 订阅者发布。 这些用户升级到1810版本后&#xff0c;可以在不想收到已发生事件提醒的时候通过下面的步骤自动忽略过去事件…

AIGC ChatGPT4 生成Python可视化分析

使用Python进行数据分析,代码可以通过ChatGPT4来完成。 例如Prompt: 产品 销量 P1 48 P2 53 P3 82 P4 57 P5 89 P6 86 P7 30 P8 79 P9 96 将上述数据用Python通过可视化的图表来进行展示 完整代码如下: import matplotlib.pyplot as pltpr…

神经网络中的量化与蒸馏

本文将深入研究深度学习中精简模型的技术&#xff1a;量化和蒸馏 深度学习模型&#xff0c;特别是那些具有大量参数的模型&#xff0c;在资源受限环境中的部署几乎是不可能的。所以就出现了两种流行的技术&#xff0c;量化和蒸馏&#xff0c;它们都是可以使模型更加轻量级&…

视频推拉流EasyDSS直播点播平台获取指定时间快照的实现方法

视频推拉流直播点播系统EasyDSS平台&#xff0c;可提供流畅的视频直播、点播、视频推拉流、转码、管理、分发、录像、检索、时移回看等功能&#xff0c;可兼容多操作系统&#xff0c;在直播点播领域具有广泛的场景应用。为了便于用户集成、调用与二次开发。 今天我们来介绍下在…

C 语言实现 UDP

广播 发送广播信息&#xff0c;局域网中的客户端都可以接受该信息 #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <arpa/inet.h>int main() {// 1.创建一个通信的socketint fd socket(PF_INET, …

RabbitMQ之消息应答和持久化

文章目录 前言一、消息应答1.概念2.自动应答3.消息应答方法4.Multiple 的解释5.消息自动重新入队6.消息手动应答代码7.手动应答效果演示 二、RabbitMQ持久化1.概念2.队列如何实现持久化3.消息实现持久化4.不公平分发5.预取值 总结 前言 在RabbitMQ中&#xff0c;我们的消费者在…

核心!华为自研系统鸿蒙趋势

鸿蒙系统的推出引起了全球的关注&#xff0c;毕竟这是华为自主研发的操作系统。这个系统有一些特点很独特。首先&#xff0c;它的自主可控性是一大特色。因为是自家研发的&#xff0c;所以更容易适应外界变化。其次&#xff0c;它采用了分布式架构&#xff0c;这样不同设备之间…

三大开源向量数据库大比拼

向量数据库具有一系列广泛的好处&#xff0c;特别是在生成式人工智能方面&#xff0c;更具体地说&#xff0c;是在大语言模型&#xff08;LLM&#xff09;方面。这些好处包括先进的索引和精确的相似度搜索&#xff0c;有助于交付强大的先进项目。 本文将对三种开源向量数据库&…

Linux 关闭对应端口号进程

查看当前的端口号是否在运行 找出端口号端口号进程 netstat -anp | grep 9000 关闭端口号 kill -9 [PID]

Actipro Software WPF Controls 23.1.3

Actipro Software WPF Controls v23.1.3 Actipro Software 为 Microsoft 提供软件组件和 .NET 平台。它位于克利夫兰&#xff0c;重点主要是提供高质量的用户界面软件组件以及客户的过程&#xff0c;以便他们有能力信任&#xff0c;以便为用户应用程序添加强大的功能。自 .NET…

14——2

这道题目前面看不懂可以看比如后面的 这里1/3是因为S100的长度n3&#xff08;100占3位&#xff09;&#xff0c;然后1出现的占比是1/3&#xff08;1在第一位&#xff09;&#xff0c;0出现的占比是2/3&#xff0c;因为0出现了2次&#xff0c;&#xff08;第二位&#xff0c;第…

UWB基础——IEEE 802.15.4z中可选波形

在前面的文章&#xff1a;UWB基础——基带简介中介绍了关于UWB基带脉冲波形以及相关的定义&#xff0c;本文继续介绍在IEEE 802.15.4z-2020标准中新增的一些兼容脉冲形状。 1. 基带脉冲响应 传输脉冲形状p(t)受到与标准参考脉冲r(t)的互相关函数形状的限制。 两个脉冲之间归一…

前端AJAX入门到实战,学习前端框架前必会的(ajax+node.js+webpack+git)(四)

你可以的&#xff0c;去飞吧&#xff01; 同步代码和异步代码 回调函数地狱和 Promise 链式调用 回调函数地狱 缔造“回调地狱”↓ 制造里层回调错误&#xff0c;却在最外层接收错误→无法捕获 axios源码抛出异常&#xff08;未捕获&#xff09; <!DOCTYPE html> <ht…

中睿天下加入中关村华安关键信息基础设施安全保护联盟

近日&#xff0c;中睿天下正式加入中关村华安关键信息基础设施安全保护联盟&#xff0c;成为其会员单位。 中关村华安关键信息基础设施安全保护联盟是由北京市科学技术委员会、中关村科技园区管理委员会指导支持&#xff0c;经北京市民政局批准&#xff0c;于2023年8月正式注册…

数字媒体技术基础之:常见图片文件格式

在数字图像处理和图形设计领域&#xff0c;了解不同的图片文件格式及其特点是至关重要的。每种格式都有其独特的用途和优势。以下介绍一些最常见的图片文件格式。 JPEG Joint Photographic Experts Group 扩展名&#xff1a;.jpg 或 .jpeg 特点&#xff1a; 1、有损压缩&#x…