三大开源向量数据库大比拼

向量数据库具有一系列广泛的好处,特别是在生成式人工智能方面,更具体地说,是在大语言模型(LLM)方面。这些好处包括先进的索引和精确的相似度搜索,有助于交付强大的先进项目。

本文将对三种开源向量数据库:Chroma、Milvus和Weaviate进行如实的比较。我们将探讨它们的用例、关键特性、性能指标及支持的编程语言等,以便全面公正地概述每种数据库。

向量数据库的定义

就最简单的定义而言,向量数据库将信息存储为向量(向量嵌入),向量是数据对象的数值版本。

正因为如此,向量嵌入是针对非常大的非结构化或半非结构化数据集进行索引和搜索的强大方法。这些数据集可以由文本、图像或传感器数据组成,向量数据库将这些信息排序为易于管理的格式。

向量数据库使用高维向量工作,高维向量可能含有数百个不同的维度,每个维度又都与数据对象的特定属性相关联,因此带来了无与伦比的复杂性。

不要与向量索引或向量搜索库相混淆,向量数据库是一种完整的管理解决方案,用于以下列方式存储和过滤元数据:

  • 完全易于扩展。
  • 很容易备份。
  • 支持动态数据更改。
  • 提供高级别的安全性。

使用开源向量数据库的好处

开源向量数据库提供了许多优于替代数据库的优点,比如:

  • 它们是一种灵活的解决方案,很容易修改以满足特定要求,而不像许可式方案通常为某个项目设计。
  • 开源向量数据库由庞大的开发者社区提供支持,开发者随时准备协助解决任何问题或提供有关如何改进项目的建议。
  • 开源解决方案对预算友好,没有许可费用、订阅费用或项目期间的任何意外成本。
  • 由于开源向量数据库的透明性,开发人员可以更有效地工作,了解每个组件以及数据库是如何构建的。
  • 开源产品在活跃社区的支持下,随着技术的变化而不断改进和完善。

开源向量数据库比较:Chroma Vs. Milvus Vs. Weaviate

我们已经了解了向量数据库的定义以及开源解决方案具有的好处,现在不妨考虑一下市场上最流行的一些选择。我们将重点介绍Chroma、Milvus和Weaviate的优势、功能和用途,然后进行直接的面对面比较,以确定最适合您需求的选择。

1. Chroma

Chroma旨在帮助各种规模的开发人员和企业创建LLM应用程序,提供构建复杂项目所需的所有资源。Chroma确保项目具有高度可扩展性,并以最佳方式工作,以便高维向量可以快速地存储、搜索和检索。

它之所以越来越受欢迎,是由于它是一种极其灵活的解决方案,有广泛的部署选项。此外,Chroma可以直接部署在云上,也可以在现场运行,使其成为任何企业的可行选择,无论其IT基础设施如何。

用例

Chroma还支持多种数据类型和格式,因而适合几乎任何应用程序。然而,Chroma的主要优势之一是它支持音频数据,这使得它成为基于音频的搜索引擎、音乐推荐应用程序和其他基于声音的项目的首选。

2. Milvus

Milvus在机器学习和数据科学领域获得了很高的声誉,在向量索引和查询方面拥有出色的能力。利用功能强大的算法,Milvus提供闪电般的处理和数据检索速度以及GPU支持,即使在处理非常庞大的数据集时也是如此。Milvus还可以与PyTorch和TensorFlow等其他流行的框架集成,从而允许将其添加到现有的机器学习工作流中。

用例

Milvus以其在相似性搜索和分析方面的能力而出名,广泛支持多种编程语言。这种灵活性意味着开发人员并不局限于后端操作,甚至可以在前端执行通常为服务器端语言保留的任务。比如说,您可以使用JavaScript生成PDF,同时利用来自Milvus的实时数据。这为应用程序开发开辟了新的途径,特别是针对教育内容和专注于可访问性的应用程序。

这种开源向量数据库可以应用于一系列广泛的行业和大量的应用环境。另一个突出的例子涉及电子商务,Milvus可以支撑准确的推荐系统,根据客户的偏好和购买习惯来建议产品。

它还适用于图像/视频分析项目,协助图像相似性搜索、对象识别以及基于内容的图像检索。另一个关键用例是自然语言处理,提供文档聚类和语义搜索功能以及为问答系统提供基础功能。

3.Weaviate

接受比较的第三种开源向量数据库是Weaviate,它出现在自托管的解决方案和完全托管的解决方案中。无数企业使用Weaviate来处理和管理大型数据集,因为它具有出色的性能、简单性和高度可扩展性。

Weaviate能够管理众多数据类型,非常灵活,可以存储向量和数据对象,这使得它非常适合需要一系列搜索技术的应用环境(比如向量搜索和关键字搜索)。

用例

就使用而言,Weaviate非常适合企业资源规划软件或牵涉以下方面的应用软件中的数据分类等项目:

  • 相似性搜索
  • 语义搜索
  • 图像搜索
  • 电子商务产品搜索
  • 推荐引擎
  • 网络安全威胁分析与检测
  • 异常检测
  • 自动化数据协调

现在我们对每种向量数据库的功能有了一番简单的了解,不妨考虑更具体的细节,它们在下面便捷的比较表中将每种开源解决方案区分开来。

比较表

Chroma

Milvus

Weaviate

开源状态

有,Apache-2.0许可证

有,Apache-2.0许可证

有,BSD-3-Clause许可证

发布日期

2023年2月

2019年10月

2021年1月

用例

适合众多应用环境,支持多种数据类型和格式。

擅长基于音频的搜索项目和图像/视频检索。

适合众多应用环境,支持多种数据类型和格式。

极适合电子商务推荐系统、自然语言处理及图像/视频分析。

适合众多应用环境,支持多种数据类型和格式。

极适合企业资源规划软件中的数据分类。

关键特性

极易于使用。

开发、测试和生产等环境都使用Jupyter笔记本上的同一API。

强大的搜索、过滤

和密度估计功能。

使用内存中存储和持久性存储来提供高速查询和插入性能。

为大规模向量数据处理提供自动化的数据分区、负载均衡和容错。

支持众多向量相似性搜索算法。

提供基于GraphQL的API,与知识图交互时提供灵活性

和高效率。

支持实时数据更新,确保知识图在最新变化后仍然最新。

模式推理功能使定义数据结构的过程实现了自动化。

支持的编程语言

Python或JavaScript

Python、Java、C++和Go

Python、Javascript和Go

社区和行业知名度

强大社区,提供Discord频道,可回答实时查询。

GitHub、Slack、Reddit和Twitter上有活跃的社区。

1000多企业用户。

丰富的说明文档。

专门的论坛和活跃的Slack、

Twitter和LinkedIn社区。

外加定期播客和新闻简报。

丰富的说明文档。

性能指标

没有

Milvus 2.2 Benchmark Test Report Milvus documentation

https://weaviate.io/developers/

weaviate/benchmarks/ann

GitHub星标

9000

23500

7800

结论

这篇比较指南中每种开源向量数据库都很强大、易于扩展,并且完全免费。这可能会使选择完美的解决方案变得有点困难,但如果了解您从事的具体项目和所需的支持水平,这个过程可以变得更容易。

Chroma是最新的解决方案,在社区支持方面不如其他两个,但是其易用性和灵活性使它成为一个很好的选择,特别是对于涉及音频搜索的项目。

Milvus拥有最高的GitHub星级评级和强大的社区支持,有数量惊人的企业信任这个向量数据库来满足需求。因此,Milvus很适合自然语言处理和图像/视频分析项目。

最后,Weaviate提供自托管和完全管理的解决方案,并提供详细的说明文档和支持。一个关键的用例是企业资源规划软件中的数据分类,但这款解决方案对于众多项目来说堪称完美。

相关内容拓展:(技术前沿)

近10年间,甚至连传统企业都开始大面积数字化时,我们发现开发内部工具的过程中,大量的页面、场景、组件等在不断重复,这种重复造轮子的工作,浪费工程师的大量时间。

针对这类问题,低代码把某些重复出现的场景、流程,具象化成一个个组件、api、数据库接口,避免了重复造轮子。极大的提高了程序员的生产效率。

推荐一款程序员都应该知道的软件JNPF快速开发平台,采用业内领先的SpringBoot微服务架构、支持SpringCloud模式,完善了平台的扩增基础,满足了系统快速开发、灵活拓展、无缝集成和高性能应用等综合能力;采用前后端分离模式,前端和后端的开发人员可分工合作负责不同板块,省事又便捷。

体验官网:https://www.jnpfsoft.com/?csdn

还没有了解低代码这项技术可以赶紧体验学习!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/146346.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux 关闭对应端口号进程

查看当前的端口号是否在运行 找出端口号端口号进程 netstat -anp | grep 9000 关闭端口号 kill -9 [PID]

Actipro Software WPF Controls 23.1.3

Actipro Software WPF Controls v23.1.3 Actipro Software 为 Microsoft 提供软件组件和 .NET 平台。它位于克利夫兰,重点主要是提供高质量的用户界面软件组件以及客户的过程,以便他们有能力信任,以便为用户应用程序添加强大的功能。自 .NET…

14——2

这道题目前面看不懂可以看比如后面的 这里1/3是因为S100的长度n3(100占3位),然后1出现的占比是1/3(1在第一位),0出现的占比是2/3,因为0出现了2次,(第二位,第…

UWB基础——IEEE 802.15.4z中可选波形

在前面的文章:UWB基础——基带简介中介绍了关于UWB基带脉冲波形以及相关的定义,本文继续介绍在IEEE 802.15.4z-2020标准中新增的一些兼容脉冲形状。 1. 基带脉冲响应 传输脉冲形状p(t)受到与标准参考脉冲r(t)的互相关函数形状的限制。 两个脉冲之间归一…

前端AJAX入门到实战,学习前端框架前必会的(ajax+node.js+webpack+git)(四)

你可以的&#xff0c;去飞吧&#xff01; 同步代码和异步代码 回调函数地狱和 Promise 链式调用 回调函数地狱 缔造“回调地狱”↓ 制造里层回调错误&#xff0c;却在最外层接收错误→无法捕获 axios源码抛出异常&#xff08;未捕获&#xff09; <!DOCTYPE html> <ht…

中睿天下加入中关村华安关键信息基础设施安全保护联盟

近日&#xff0c;中睿天下正式加入中关村华安关键信息基础设施安全保护联盟&#xff0c;成为其会员单位。 中关村华安关键信息基础设施安全保护联盟是由北京市科学技术委员会、中关村科技园区管理委员会指导支持&#xff0c;经北京市民政局批准&#xff0c;于2023年8月正式注册…

数字媒体技术基础之:常见图片文件格式

在数字图像处理和图形设计领域&#xff0c;了解不同的图片文件格式及其特点是至关重要的。每种格式都有其独特的用途和优势。以下介绍一些最常见的图片文件格式。 JPEG Joint Photographic Experts Group 扩展名&#xff1a;.jpg 或 .jpeg 特点&#xff1a; 1、有损压缩&#x…

vscode + gdb +gdbserver 远程调试Pg源码

本文主要介绍如何通过window或者macos远程调试虚拟机的postges源码 安装pg13调试版本 安装调试版postgres13,此处忽略 安装vscode(window macos) 安装插件 Remote Development 插件安装插件C/C 安装gdb gdbserver(远程虚拟机) yum install gdb yum install gdb-gdbserver…

使用字典树实现一个可以自动补全的输入框

说在前面 平时我们在终端输入命令的时候是不是都可以通过tab键来进行快速补全&#xff1f;那么有没有想过怎么去实现这个自动补全的功能呢&#xff1f;今天让我们一起来使用字典树实现一个可以自动补全的输入框。 效果展示 体验地址 http://jyeontu.xyz/jvuewheel/#/JAutoComp…

了解STM32看门狗定时器的工作原理和原则

STM32 系列微控制器的看门狗定时器 (Watchdog Timer&#xff0c;WWDG) 是一种重要的硬件资源&#xff0c;用于检测系统的异常状态&#xff0c;并在发生异常时执行特定的操作&#xff0c;以确保系统能够正常运行。在本文中&#xff0c;我将详细介绍 STM32 看门狗定时器的工作原理…

OpenCV颜色识别及应用

OpenCV是一个开源计算机视觉库&#xff0c;提供了丰富的图像处理和计算机视觉算法&#xff0c;其中包括颜色识别。本文首先介绍了OpenCV库&#xff0c;然后着重描述了颜色识别的基本原理和方法&#xff0c;包括颜色空间的转换、阈值处理、颜色检测等技术。接下来详细探讨了Open…

​软考-高级-系统架构设计师教程(清华第2版)【第6章 数据库设计基础知识(234~262)-思维导图】​

软考-高级-系统架构设计师教程&#xff08;清华第2版&#xff09;【第6章 数据库设计基础知识&#xff08;234~262&#xff09;-思维导图】 课本里章节里所有蓝色字体的思维导图

466. 回文日期

题目&#xff1a; 466. 回文日期 - AcWing题库 思路&#xff1a; 1.如果正向考虑&#xff0c;计算两天之间所以的回文数&#xff0c;应该如何枚举&#xff1f;没有明确的进制&#xff0c;那么只能列一个日历&#xff0c;这样会比较麻烦。 2.我们不妨采用逆向思维&#xff0…

单片机与PLC的区别有哪些?

单片机与PLC的区别有哪些? 什么是单片机&#xff1f; 单片机&#xff08;Microcontroller&#xff0c;缩写MCU&#xff09;是一种集成了中央处理器&#xff08;CPU&#xff09;、存储器和输入/输出接口等功能模块的微型计算机系统。它通常被用于嵌入式系统和控制系统中&#x…

HTML 之常用标签的介绍

文章目录 h标签p标签a标签img 标签table、tr、td标签ul、ol、li 标签div 标签 h标签 <h> 标签用于定义 HTML 文档中的标题&#xff0c;其中 h 后面跟着一个数字&#xff0c;表示标题的级别。HTML 提供了 <h1> 到 <h6> 六个不同级别的标题&#xff0c;其中 &…

【亚马逊云科技】使用Amazon Lightsail快速建站

写在前面&#xff1a;博主是一只经过实战开发历练后投身培训事业的“小山猪”&#xff0c;昵称取自动画片《狮子王》中的“彭彭”&#xff0c;总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域&#xff0c;如今终有小成…

opencv车牌识别<二>

目录 一、车牌识别算法流程 二、车牌检测 一、车牌识别算法流程 在解释ANPR代码之前&#xff0c;需要明白主要步骤和使用ANPR 算法的任务。ANPR 有两个主要步骤:车牌检测和车牌识别。车牌检测的目的是在整个视频帧中检测到车牌位置。当在图像中检测到车牌时&#xff0c;分割的…

Linux下向Github仓库推送

文章目录 Git 与 Github安装git在github下创建项目下载项目到本地Git三板斧第一板斧 git add第二板斧 git commit第三板斧 git push Git 与 Github Git是目前从开发人员到设计人员的版本控制技术。gitee是国内社交代码托管平台。这是一个你可以玩和实验的地方。在这里你可以找…

字符串旋转结果

文章目录 题目解法1解法2 题目 字符串旋转结果 写一个函数&#xff0c;判断一个字符串是否为另外一个字符串旋转之后的字符串。 例如&#xff1a;给定s1 AABCD和s2 BCDAA&#xff0c;返回1 给定s1abcd和s2ACBD&#xff0c;返回0. AABCD左旋一个字符得到ABCDA AABCD左旋两个字…

深度学习 植物识别算法系统 计算机竞赛

文章目录 0 前言2 相关技术2.1 VGG-Net模型2.2 VGG-Net在植物识别的优势(1) 卷积核&#xff0c;池化核大小固定(2) 特征提取更全面(3) 网络训练误差收敛速度较快 3 VGG-Net的搭建3.1 Tornado简介(1) 优势(2) 关键代码 4 Inception V3 神经网络4.1 网络结构 5 开始训练5.1 数据集…