将随机数设成3407,让你的深度学习模型再涨一个点!文再附3种随机数设定方法

随机数重要性

深度学习已经在计算机视觉领域取得了巨大的成功,但我们是否曾想过为什么同样的模型在不同的训练过程中会有不同的表现?为什么使用同样的代码,就是和别人得到的结果不一样?怎么样才能保证自己每次跑同一个实验得到的结果都是一样的?

其中一个可能的原因就是随机数的选择。在本文中,我们将着重探讨如何通过合理设置随机数来提高深度学习模型的准确性(涨点大法)。以及如何固定随机数来保证实验的可重复性

arxiv上有篇极其离谱又很有深意的文章

torch.manual seed(3407) is all you need: On the influence of random seeds in deep learning architectures for computer vision. 论文链接

是的,你没看错,文章标题就言简意赅告诉你torch.manual seed(3407) is all you need

而且我发现很多群友已经用上了魔法(是我out了🙃)

这篇文章做了很多实验,就解决了三个问题:

  • 关于随机种子选择的分数分布是什么?答:随机种子变化时的精度分布相对尖锐,这意味着结果相当集中于平均值。一旦模型收敛,这种分布就相对稳定,这意味着有些种子本质上比其他种子好

  • 是否有黑天鹅,即有些种子会产生截然不同的结果?答:是。在对10000个种子的扫描中,作者获得了接近2%的最大和最小精度差异,这高于计算机视觉社区通常使用的重要阈值。(随机数设置的对,没准能涨2个点!)

  • 对较大数据集的预处理是否减轻了种子选择引起的差异?答:是,它当然减少了由于使用不同种子而产生的差异,但并没有抹去这种差异,在Imagenet上,最大和最小准确度之间的差异仍然有0.5%

全文总结:随机数的选择很重要,当你涨点无果时,试下3407,没准儿有奇效~

随机数设定

那随机数怎么设置,在哪里设置呢?3种设定方法任你选,最后一种最简单!

1.pytorch中设定随机数👇

import numpy as np
import torch
import random
import os

seed_value = 3407   # 设定随机数种子

np.random.seed(seed_value)
random.seed(seed_value)
os.environ['PYTHONHASHSEED'] = str(seed_value)  # 为了禁止hash随机化,使得实验可复现。

torch.manual_seed(seed_value)     # 为CPU设置随机种子
torch.cuda.manual_seed(seed_value)      # 为当前GPU设置随机种子(只用一块GPU)
torch.cuda.manual_seed_all(seed_value)   # 为所有GPU设置随机种子(多块GPU)

torch.backends.cudnn.deterministic = True

以上代码放在所有使用随机数前就行。我习惯性放在import之后,在做事情前先把随机数设定好,比较安全。

下面进行简单地分析。愿意多看一点的继续,忙的直接粘贴复制上面代码即可。

上述代码的随机数主要是三个方面的设定。

1. python 和 numpy 随机数的设定

np.random.seed(seed_value)
random.seed(seed_value)
os.environ['PYTHONHASHSEED'] = str(seed_value)  # 为了禁止hash随机化,使得实验可复现。

如果读取数据的过程采用了随机预处理(如RandomCrop、RandomHorizontalFlip等),那么对python、numpy的随机数生成器也需要设置种子。

2. pytorch 中随机数的设定

torch.manual_seed(seed_value)     # 为CPU设置随机种子
torch.cuda.manual_seed(seed_value)      # 为当前GPU设置随机种子(只用一块GPU)
torch.cuda.manual_seed_all(seed_value)   # 为所有GPU设置随机种子(多块GPU)

pytorch中,会对模型的权重等进行初始化,因此也要设定随机数种子

3. Cudnn 中随机数的设定
cudnn中对卷积操作进行了优化,牺牲了精度来换取计算效率。如果需要保证可重复性,可以使用如下设置:

torch.backends.cudnn.deterministic = True

另外,也有人提到说dataloder中,可能由于读取顺序不同,也会造成结果的差异。这主要是由于dataloader采用了多线程(num_workers > 1)。目前暂时没有发现解决这个问题的方法,但是只要固定num_workers数目(线程数)不变,基本上也能够重复实验结果。

2.为随机数设定代码添加活动模板

这么长的代码,每次都要敲一遍,或者粘贴复制也很麻烦。因此,可以在pycharm里面设定一个模板,就可以快捷输入了。大致过程如下:

想要细节描述的可以百度 pycharm 活动模板的设定。
当我要使用这段代码的时候,敲自己定义的快捷字符串就可以了

3 MONAI框架随机数设定

Monai 对随机数的设定,一行代码就搞定了

from monai.utils import set_determinism
set_determinism(seed=3407)

和pytorch中使用方法是一样的,这个函数就是已经设定好了各种各样的随机数。使用起来更方便。亲测有用。

文章持续更新,可以关注微公【医学图像人工智能实战营】获取最新动态,一个关注于医学图像处理领域前沿科技的公众号。坚持以实践为主,手把手带你做项目,打比赛,写论文。凡原创文章皆提供理论讲解,实验代码,实验数据。只有实践才能成长的更快,关注我们,一起学习进步~

我是Tina, 我们下篇博客见~

白天工作晚上写文,呕心沥血

觉得写的不错的话最后,求点赞,评论,收藏。或者一键三连
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/141975.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Django中Cookie和Session的使用

目录 一、Cookie的使用 1、什么是Cookie? 2、Cookie的优点 3、Cookie的缺点 4、Django中Cookie的使用 二、Session的使用 1、什么是Session? 2、Session的优点 3、Session的缺点 4、Django中Session的使用 三、Cookie和Session的对比 总结 D…

Vue 小黑记事本组件板

渲染功能: 1.提供数据: 提供在公共的父组件 App.vue 2.通过父传子,将数据传递给TodoMain 3.利用 v-for渲染 添加功能: 1.收集表单数据 v-model 2.监听事件(回车点击都要添加) 3.子传父,讲…

【嵌入式设计】Main Memory:SPM 便签存储器 | 缓存锁定 | 读取 DRAM 内存 | DREM 猝发(Brust)

目录 0x00 便签存储器(Scratchpad memory) 0x01 缓存锁定(Cache lockdown) 0x02 读取 DRAM 内存 0x03 DREM Banking 0x04 DRAM 猝发(DRAM Burst) 0x00 便签存储器(Scratchpad memory&#…

Flutter有状态组件StatefulWidget生命周期

StatefulWidget是Flutter中的一个有状态的组件,它的生命周期相对复杂一些。下面是StatefulWidget的生命周期方法及其调用顺序: 1. createState(): 当StatefulWidget被插入到Widget树中时,会调用createState()方法来创建与之关联的State对象。…

软路由R4S+iStoreOS实现公网远程桌面局域网内电脑

软路由R4SiStoreOS实现公网远程桌面局域网内电脑 文章目录 软路由R4SiStoreOS实现公网远程桌面局域网内电脑简介 一、配置远程桌面公网地址配置隧道 二、家中使用永久固定地址 访问公司电脑具体操作方法是:2.1 登录页面2.2 再次配置隧道2.3 查看访问效果 简介 上篇…

力扣511. 游戏玩法分析 I

答案: select player_id,min(event_date) as first_login from Activity a group by player_id我最开始写的错误答案是这样的: select player_id,event_date as first_login from Activity a group by player_id having event_date min(event_date…

Docker - DockerFile

Docker - DockerFile DockerFile 描述 dockerfile 是用来构建docker镜像的文件!命令参数脚本! 构建步骤: 编写一个dockerfile 文件docker build 构建成为一个镜像docker run 运行脚本docker push 发布镜像(dockerhub&#xff0…

无监督学习的集成方法:相似性矩阵的聚类

在机器学习中,术语Ensemble指的是并行组合多个模型,这个想法是利用群体的智慧,在给出的最终答案上形成更好的共识。 这种类型的方法已经在监督学习领域得到了广泛的研究和应用,特别是在分类问题上,像RandomForest这样…

【KVM-5】KVM架构

前言 大家好,我是秋意零。今天分析的内容是KVM架构。 👿 简介 🏠 个人主页: 秋意零🔥 账号:全平台同名, 秋意零 账号创作者、 云社区 创建者🧑 个人介绍:在校期间参与…

正点原子嵌入式linux驱动开发——Linux IIO驱动

工业场合里面也有大量的模拟量和数字量之间的转换,也就是常说的ADC和DAC。而且随着手机、物联网、工业物联网和可穿戴设备的爆发,传感器的需求只持续增强。比如手机或者手环里面的加速度计、光传感器、陀螺仪、气压计、磁力计等,这些传感器本…

计算机视觉(CV)技术的优势和挑战

计算机视觉技术在很多领域具有很大的优势,例如: 自动化:计算机视觉技术可以帮助实现自动化生产和检测,省去了人力成本和时间成本。 准确性:计算机视觉技术可以提高生产和检测的准确性,降低了人工操作产生的误差。 速度:计算机视觉技术可以实现高速速度的生产和检测,提高…

flv.js在vue中的使用

Flv.js 是 HTML5 Flash 视频(FLV)播放器,纯原生 JavaScript 开发,没有用到 Flash。由 bilibili 网站开源。它的工作原理是将 FLV 文件流转码复用成 ISO BMFF(MP4 碎片)片段,然后通过 Media Sour…

【vue实战项目】通用管理系统:封装token操作和网络请求

目录 1.概述 2.封装对token的操作 3.封装axios 1.概述 前文我们已经完成了登录页: 【vue实战项目】通用管理系统:登录页-CSDN博客 接下来我们要封装一下对token的操作和网络请求操作。之所以要封装这部分内容是因为token我们登陆后的所有请求都要携…

Python爬虫从基础到入门:认识爬虫

Python爬虫从基础到入门:认识爬虫 1. 认识爬虫2. 开始简单的爬虫操作(使用requests)3. 辨别“数据”是静态加载还是动态生成的1. 认识爬虫 爬虫用自己的话说其实就是利用一定的编程语言,到网络上去抓取一些数据为自己所用。那为什么要用爬虫呢?自己直接到网页上去copy数据它…

线性代数本质系列(二)矩阵乘法与复合线性变换,行列式,三维空间线性变换

本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第二篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与复合线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克…

Arthas(阿尔萨斯)--(二)

目录 一、Arthas学习 1、JVM相关命令一 1、dashboard 2、thread 3、jvm 4、sysprop 一、Arthas学习 Arthas(阿尔萨斯)--(一) Arthas代码开源地址 1、JVM相关命令一 1、dashboard dashboard:显示当前系统的实时数据面板,按q或ctrlc退出 ID: Java 级别的线…

vue3 ref 与shallowRef reactive与shallowReactive

ref 给数据添加响应式,基本类型采用object.defineProperty进行数据劫持,对象类型是借助reactive 实现响应式,采用proxy 实现数据劫持,利用reflect进行源数据的操作 let country ref({count:20,names:[河南,山东,陕西],objs:{key…

postman调用接口报{“detail“:“Method \“DELETE\“ not allowed.“}错误, 解决记录

项目是python代码开发, urls.py 路由中访问路径代码如下: urlpatterns [path(reportmanagement/<int:pk>/, views.ReportManagementDetail.as_view(), namereport-management-detail),] 对应view视图中代码如下: class ReportManagementDetail(GenericAPIView):"…

华为笔记本电脑原装win10/win11系统恢复安装教程方法

华为电脑matebook 14原装Win11系统带F10智能还原 安装恢复教程&#xff1a; 1.安装方法有两种&#xff0c;一种是用PE安装&#xff0c;一种是华为工厂包安装&#xff08;安装完成自带F10智能还原&#xff09; 若没有原装系统文件&#xff0c;请在这里获取&#xff1a;https:…

适配器模式 rust和java的实现

文章目录 适配器模式介绍何时使用应用实例优点缺点使用场景 实现java实现rust 实现 rust代码仓库 适配器模式 适配器模式&#xff08;Adapter Pattern&#xff09;是作为两个不兼容的接口之间的桥梁。这种类型的设计模式属于结构型模式&#xff0c;它结合了两个独立接口的功能…