线性代数本质系列(二)矩阵乘法与复合线性变换,行列式,三维空间线性变换

本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第二篇

向量究竟是什么?
向量的线性组合,基与线性相关
矩阵与线性相关
矩阵乘法与复合线性变换
三维空间中的线性变换
行列式

逆矩阵,列空间,秩与零空间
克莱姆法则
非方阵
点积与对偶性
叉积
以线性变换眼光看叉积
基变换
特征向量与特征值
抽象向量空间
快速计算二阶矩阵特征值
张量,协变与逆变和秩

文章目录

  • 矩阵乘法与复合线性变换
  • 三维空间中的线性变换
  • 行列式

矩阵乘法与复合线性变换

我们已经知道矩阵是一种线性变换,现在对基向量连续施加两种线性变换,例如,先旋转,再剪切,其实,这在整体上可以看作是一种新的变换,这个新的变换被称为前两种独立变换的“复合变换”。
在这里插入图片描述

这个复合变换的矩阵可以通过追踪基向量的坐标得到,如上图所示,变换后的 i ⃗ \vec{i} i 坐标 [ 1 1 ] \begin{bmatrix} 1\\ 1 \end{bmatrix} [11],变换后的 j ⃗ \vec{j} j 坐标 [ − 1 0 ] \begin{bmatrix} -1\\ 0 \end{bmatrix} [10],那么该复合变换矩阵就可以表示为: [ 1 − 1 1 0 ] \begin{bmatrix} 1 & -1\\ 1 & 0 \end{bmatrix} [1110],当我们求一个向量经过复合变换后的坐标时,可以通过下图右边公式那样直接使用复合变换矩阵,而不需要像下图左边那样对向量连续施加两次单独的变换。
Alt

更一般地,对于矩阵乘法,我们就有了新的认识:他的几何意义是先施加一个变换,再施加另一个变换,施加顺序从右到左,顺序不同得到的结果也不同。

在这里插入图片描述

推广到更一般地数学含义: g ( f ( x ) ) g( f( x)) g(f(x))

根据前面章节学习到的知识,要想求线性变换对向量的作用,首先要得到变换后的基向量的坐标,让我们来看一个例子,假设连续施加两个线性变换 M 1 M_{1} M1 M 2 M_{2} M2
在这里插入图片描述

要想跟踪 i ⃗ \vec{i} i 的去向,先看 M 1 M_{1} M1的第一列,这是经过 M 1 M_{1} M1变换后 i ⃗ \vec{i} i 首先到达的地方: [ e g ] \begin{bmatrix} e\\ g \end{bmatrix} [eg],然后新的 i ⃗ \vec{i} i 要经过 M 2 M_{2} M2的变换后到达最终目的地:
在这里插入图片描述

该结果作为复合矩阵的第一列, j ⃗ \vec{j} j 经过同样的变换过程到达最终目的地,结果为复合变换矩阵第二列,复合变换的最终结果为:
在这里插入图片描述

看,这不就是课堂上老师教的矩阵乘法计算规则嘛,只不过我们是从几何的角度推出来的。

大家可以从几何的角度来自行分析一下矩阵乘法的法则:

交换律: M 1 M 2 ≠ M 2 M 1 M_{1} M_{2} \neq M_{2} M_{1} M1M2=M2M1

结合率:(AB)C=A(BC)

三维空间中的线性变换

前面一直在讨论二维情况,也就是将二维向量映射成二维向量,其实,只要掌握了二维线性变换的核心本质,就能轻松的扩展到更高维的空间中。
二维线性变换

三维空间变换以三维向量为输入,以三维向量为输出,和二维向量一样,一个线性变换是在操纵三维空间中所有的点,变换后保持空间中网格线等距且原点不变。
在这里插入图片描述

与二维一样,三维线性变换也是由基向量的去向完全决定,只不过基向量由 i ⃗ \vec{i} i j ⃗ \vec{j} j 变成了 i ⃗ \vec{i} i j ⃗ \vec{j} j , k ⃗ \vec{k} k ,例如,我们得到变换后三个基向量的坐标,那么由三个新的基向量组成矩阵就是三维线性变换矩阵 [ 1 1 1 0 1 0 − 1 0 1 ] \begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & 0\\ -1 & 0 & 1 \end{bmatrix} 101110101

在这里插入图片描述

要想计算一个向量经过上面的三维变换后的新坐标,同样可以参照二维空间的计算方式,结果向量是基向量的线性组合。

在这里插入图片描述
在这里插入图片描述

同理两个三维矩阵的相乘也可以合并成一个复合变换矩阵,三维变换在计算机图形学中有着广泛的应用。
在这里插入图片描述

三维矩阵的乘法同样遵循二维矩阵乘法的思路。

行列式

前面我们从几何的角度对线性变换有了很直观的认识,其中有的线性变换对空间向外拉伸,有的则是将空间向内挤压。
 向内挤压
向内挤压

  向外拉伸
向外拉伸

有一种方法对于理解这些线性变换很有用,那就是准确测量向内挤压了多少,向外拉伸了多少,更具体地讲就是计算出一个区域增大或减少的比例。

让我们来看一个例子,假设一个线性变换矩阵 [ 3 0 0 2 ] \begin{bmatrix} 3 & 0\\ 0 & 2 \end{bmatrix} [3002],变换前基向量形成的四边形面积为1。

在这里插入图片描述

变换后,如下图,基向量形成一个2*3的矩形,面积为6

在这里插入图片描述

所以我们说这个变换将基向量形成的方格拉伸了6倍,根据线性变换的性质,如下图,所有可形成的区域都被拉伸了同样的大小。

在这里插入图片描述

现在,我们要抛出一个重磅信息:这个面积的变化的比例值就是该线性变换矩阵的行列式,这就是行列式的几何意义。

在这里插入图片描述

如果行列式值大于1,则代表该线性变换矩阵将一个区域进行拉伸,大于0且小于1的数代表缩小,负数代表反方向缩放。

注意,如果一个线性变换矩阵的行列式为0,则代表该变换将一个区域压缩成了一条线或者是一个点,从几何意义上讲,也就是说该变换将空间压缩到了更小的维度上,这在我们后面判断线性方程组是否有解提供了重要依据。

在这里插入图片描述

同理,三维线性变换的行列式代表的则是体积的变换比例,如下图,一个以初始基向量形成的111的立方体经过线性变换后该体积变成了如下图的大小。
在这里插入图片描述

三维变换矩阵的行列式为0,代表空间被压缩成了一个面,或者一个点,如果行列式是负数,说明空间定向已经发生改变,不能用右手定则描述基向量之间的关系。

前面说了行列式的几何意义,那如何求一个矩阵的行列式呢?
在这里插入图片描述

上图是一个行列式的计算公式,那它的几何意义是什么呢?如下图,假设给定一个特殊矩阵 [ a 0 0 d ] \begin{bmatrix} a & 0\\ 0 & d \end{bmatrix} [a00d] i ⃗ \vec{i} i 被缩放了a倍, j ⃗ \vec{j} j 被缩放了d倍,变换前后面积缩放了ad倍,这正符合行列式计算公式的结果。

在这里插入图片描述

前面我们给出了一个特殊的例子,但推广到更一般的矩阵,也是满足上面公式的。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/141950.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Arthas(阿尔萨斯)--(二)

目录 一、Arthas学习 1、JVM相关命令一 1、dashboard 2、thread 3、jvm 4、sysprop 一、Arthas学习 Arthas(阿尔萨斯)--(一) Arthas代码开源地址 1、JVM相关命令一 1、dashboard dashboard:显示当前系统的实时数据面板,按q或ctrlc退出 ID: Java 级别的线…

vue3 ref 与shallowRef reactive与shallowReactive

ref 给数据添加响应式,基本类型采用object.defineProperty进行数据劫持,对象类型是借助reactive 实现响应式,采用proxy 实现数据劫持,利用reflect进行源数据的操作 let country ref({count:20,names:[河南,山东,陕西],objs:{key…

postman调用接口报{“detail“:“Method \“DELETE\“ not allowed.“}错误, 解决记录

项目是python代码开发, urls.py 路由中访问路径代码如下: urlpatterns [path(reportmanagement/<int:pk>/, views.ReportManagementDetail.as_view(), namereport-management-detail),] 对应view视图中代码如下: class ReportManagementDetail(GenericAPIView):"…

华为笔记本电脑原装win10/win11系统恢复安装教程方法

华为电脑matebook 14原装Win11系统带F10智能还原 安装恢复教程&#xff1a; 1.安装方法有两种&#xff0c;一种是用PE安装&#xff0c;一种是华为工厂包安装&#xff08;安装完成自带F10智能还原&#xff09; 若没有原装系统文件&#xff0c;请在这里获取&#xff1a;https:…

适配器模式 rust和java的实现

文章目录 适配器模式介绍何时使用应用实例优点缺点使用场景 实现java实现rust 实现 rust代码仓库 适配器模式 适配器模式&#xff08;Adapter Pattern&#xff09;是作为两个不兼容的接口之间的桥梁。这种类型的设计模式属于结构型模式&#xff0c;它结合了两个独立接口的功能…

Javaweb之javascript事件的详细解析

1.6 JavaScript事件 1.6.1 事件介绍 如下图所示的百度注册页面&#xff0c;当我们用户输入完内容&#xff0c;百度可以自动的提示我们用户名已经存在还是可以使用。那么百度是怎么知道我们用户名输入完了呢&#xff1f;这就需要用到JavaScript中的事件了。 什么是事件呢&…

【电路笔记】-戴维南定理(Thevenin‘s Theorem)

戴维南定理&#xff08;Thevenin’s Theorem&#xff09; 文章目录 戴维南定理&#xff08;Thevenins Theorem&#xff09;1、概述与定义2、戴维南模型确定3、一些线性电路的戴维南模型3.1 单电压源3.2 单电流源3.3 多电流/电压源 4、结论 在本文中&#xff0c;我们将介绍一种强…

2023.11.12使用flask对图片进行黑白处理(base64编码方式传输)

2023.11.12使用flask对图片进行黑白处理&#xff08;base64编码方式传输&#xff09; 由前端输入图片并预览&#xff0c;在后端处理图片后返回前端显示&#xff0c;可以作为图片处理的模板。 关键点在于对图片进行base64编码的转化。 使用Base64编码可以更方便地将图片数据嵌入…

file2Udp增量日志转出Udp简介

https://gitee.com/tianjingle/file2udp 很多时候服务产生的日志需要进行汇总&#xff0c;这种统一日志处理的方式有elb&#xff0c;而且很多日志组件也支持日志转出的能力。但是从广义上来说是定制化的&#xff0c;我们需要一个小工具实现tail -f的能力&#xff0c;将增量日志…

[100天算法】-球会落何处(day 76)

题目描述 用一个大小为 m x n 的二维网格 grid 表示一个箱子。你有 n 颗球。箱子的顶部和底部都是开着的。箱子中的每个单元格都有一个对角线挡板&#xff0c;跨过单元格的两个角&#xff0c;可以将球导向左侧或者右侧。将球导向右侧的挡板跨过左上角和右下角&#xff0c;在网…

【java:牛客每日三十题总结-7】

java:牛客每日三十题总结 总结如下 总结如下 执行流程如下&#xff1a;创建HttpServlet时需要覆盖doGet()和doPost请求 2. request相关知识 request.getParameter()方法传递的数据&#xff0c;会从Web客户端传到Web服务器端&#xff0c;代表HTTP请求数据&#xff1b;request.…

C#中.NET 6.0控制台应用通过EF访问已建数据库

目录 一、新建.NET 6.0控制台应用并建立数据库连接 二、下载并安装EF程序包 三、自动生成EF模型和上下文 1.Blog类模型 2.Post类模型 3.数据库上下文 四、设计自己的应用 VS2022的.NET6.0、.NET7.0框架下默认支持EF7&#xff08;版本号7.0.13&#xff09;&#xff0c;除…

在 SQL 中,当复合主键成为外键时应该如何被其它表引用

文章目录 当研究一个问题慢慢深入时&#xff0c;一个看起来简单的问题也暗藏玄机。在 SQL 中&#xff0c;主键成为外键这是一个很平常的问题&#xff0c;乍一看没啥值得注意的。但如果这个主键是一种复合主键&#xff0c;而另一个表又引用这个键作为它的复合主键&#xff0c;问…

HTTP——

HTTP 请求报文的构成 如下图: 第一行:HTTP请求的方法,具体是POST方法还是GET方法,或是其它方法;URI就是你的HTTP请求的路径;后面是HTTP协议的版本; 第二行往下连续多行:这些是请求头部分,也就是请求的首部设置的一些信息,相当于对HTTP请求的一些设置; 空格行:在…

U-Mail邮件中继有效解决海外邮件发送不畅难题

相信不少企业都经历过类似的问题&#xff0c;在跟国外客户发送电子邮件的过程中&#xff0c;经常会遇到邮件发不过去、邮件隔了很久对方才收到&#xff0c;或者是邮件退信等情况出现。对此&#xff0c;U-Mail技术专家李工解释到&#xff0c;导致海外通邮不畅主要有以下三个原因…

数据结构哈希表(散列)Hash,手写实现(图文推导)

目录 一、介绍 二、哈希数据结构 三、✍️实现哈希散列 1. 哈希碰撞&#x1f4a5; 2. 拉链寻址⛓️ 3. 开放寻址⏩ 4. 合并散列 一、介绍 哈希表&#xff0c;也被称为散列表&#xff0c;是一种重要的数据结构。它通过将关键字映射到一个表中的位置来直接访问记录&#…

字符设备驱动基础框架

一、总体框架 1.Linux字符设备驱动工作原理图 2.驱动使用端 3.驱动实现端 二、各部分详解 1.VFS层 1) inode结构体 在Unix/Linux操作系统中&#xff0c;每个文件都由一个inode&#xff08;索引节点&#xff09;来索引。inode是特殊的磁盘块&#xff0c;它们在文件系统创建时…

【Spring Boot】034-Spring Boot 整合 JUnit

【Spring Boot】034-Spring Boot 整合 JUnit 文章目录 【Spring Boot】034-Spring Boot 整合 JUnit一、单元测试1、什么是单元2、什么是单元测试3、为什么要单元测试 二、JUnit1、概述简介特点 2、JUnit4概述基本用法 3、JUnit5概述组成 4、JUnit5 与 JUnit4 的常用注解对比 三…

SQL学习(CTFhub)整数型注入,字符型注入,报错注入 -----手工注入+ sqlmap注入

目录 整数型注入 手工注入 为什么要将1设置为-1呢&#xff1f; sqlmap注入 sqlmap注入步骤&#xff1a; 字符型注入 手工注入 sqlmap注入 报错注入 手工注入 sqlmap注入 整数型注入 手工注入 先输入1 接着尝试2&#xff0c;3&#xff0c;2有回显&#xff0c;而3没有回显…

No199.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…