2023年亚太杯数学建模思路 - 案例:FPTree-频繁模式树算法

文章目录

    • 赛题思路
    • 算法介绍
    • FP树表示法
    • 构建FP树
    • 实现代码
  • 建模资料

赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

实现代码

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        fset = frozenset(trans)
        retDict.setdefault(fset, 0)
        retDict[fset] += 1
    return retDict

class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}

    def inc(self, numOccur):
        self.count += numOccur

    def disp(self, ind=1):
        print('   ' * ind, self.name, ' ', self.count)
        for child in self.children.values():
            child.disp(ind + 1)


def createTree(dataSet, minSup=1):
    headerTable = {}
    #此一次遍历数据集, 记录每个数据项的支持度
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + 1

    #根据最小支持度过滤
    lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))
    for k in lessThanMinsup: del(headerTable[k])

    freqItemSet = set(headerTable.keys())
    #如果所有数据都不满足最小支持度,返回None, None
    if len(freqItemSet) == 0:
        return None, None

    for k in headerTable:
        headerTable[k] = [headerTable[k], None]

    retTree = treeNode('φ', 1, None)
    #第二次遍历数据集,构建fp-tree
    for tranSet, count in dataSet.items():
        #根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度
        localD = {}
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]

        if len(localD) > 0:
            #根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] desc
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]
            updateTree(orderedItems, retTree, headerTable, count)
    return retTree, headerTable


def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:  # check if orderedItems[0] in retTree.children
        inTree.children[items[0]].inc(count)  # incrament count
    else:  # add items[0] to inTree.children
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:  # update header table
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])

    if len(items) > 1:  # call updateTree() with remaining ordered items
        updateTree(items[1:], inTree.children[items[0]], headerTable, count)


def updateHeader(nodeToTest, targetNode):  # this version does not use recursion
    while (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode

simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/141872.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Maya v2024(3D动画制作软件)

Maya 2024是一款三维计算机图形动画制作软件。它被广泛应用于电影、电视、游戏、动画等领域中&#xff0c;用于创建各种三维模型、场景、特效和动画。 以下是Maya的主要特点&#xff1a; 强大的建模工具&#xff1a;Maya提供了各种建模工具&#xff0c;如多边形建模、NURBS建模…

lamp环境搭建(kali,docker,ubuntu)

学了微专业,然后第一节课是学的搭建自己的环境,这里记录一下吧。 搭建一个lamp环境 (因为本人使用的是kali而且还带有集成环境的xampp,本身就自带了apache2,mysql和php。)后面有用ubuntu从0开始搭建的。 在kali环境下: 1.首先查看apache2和mysql和php 查看apache2 where…

Python中的数据增强技术

使用imgaug快速观察Python中的数据增强技术 在本文中&#xff0c;我们将使用imgaug库来探索Python中不同的数据增强技术 什么是图像增强 图像增强是一种强大的技术&#xff0c;用于在现有图像中人为地创建变化以扩展图像数据集。这是通过应用不同的变换技术来实现的&#xf…

矩阵置零00

题目链接 矩阵置零 题目描述 注意点 使用 原地 算法 解答思路 思路是需要存储每一行以及每一列是否有0&#xff0c;因为要尽可能使用更少的空间&#xff0c;且新设置为0的格子不能对后续的判断产生影响&#xff0c;所以要在原有矩阵上存储该信息先用两个参数存储第一行和第…

飞天使-django创建一个初始项目过程

创建django项目 运行项目 运行命令 pyhont manage.py runserver 然后访问 http://127.0.0.1:8000/&#xff0c; 则可以打开本地新建的项目 虚拟环境的部署-mac 在一台计算机上可以通过虚拟环境实现多个版本Django的开发环境 安装虚拟环境工具&#xff1a;如果你的系统中没有安…

properties文件乱码

出现如下乱码&#xff1a; 按照步骤修改编码方式就可以解决啦 修改之后结果就是下面这样~

搜索引擎项目

认识搜索引擎 1、有一个主页、有搜索框。在搜索框中输入的内容 称为“查询词” 2、还有搜索结果页&#xff0c;包含了若干条搜索结果 3、针对每一个搜索结果&#xff0c;都会包含查询词或者查询词的一部分或者和查询词具有一定的相关性 4、每个搜索结果包含好几个部分&…

微软允许OEM对Win10不提供关闭Secure Boot

用户可能将无法在Windows 10电脑上安装其它操作系统了&#xff0c;微软不再要求OEM在UEFI 中提供的“关闭 Secure Boot”的选项。 微软最早是在Designed for Windows 8认证时要求OEM的产品必须支持UEFI Secure Boot。Secure Boot 被设计用来防止恶意程序悄悄潜入到引导进程。问…

Android framework添加自定义的Product项目,lunch目标项目

文章目录 Android framework添加自定义的Product项目1.什么是Product&#xff1f;2.定义自己的Product玩一玩 Android framework添加自定义的Product项目 1.什么是Product&#xff1f; 源码目录下输入lunch命令之后&#xff0c;简单理解下面这些列表就是product。用于把系统编…

docker基础使用

简介 Docker 是一个开源的应用容器引擎&#xff0c;基于 Go 语言 并遵从 Apache2.0 协议开源。 Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中&#xff0c;然后发布到任何流行的 Linux 机器上&#xff0c;也可以实现虚拟化。 容器是完全使用沙箱机…

如何显示标注的纯黑mask图

文章目录 前言一、二分类mask显示二、多分类mask显示 前言 通常情况下&#xff0c;使用标注软件标注的标签图看起来都是纯黑的&#xff0c;因为mask图为单通道的灰度图&#xff0c;而灰度图一般要像素值大于128后&#xff0c;才会逐渐显白&#xff0c;255为白色。而标注的时候…

二、Linux用户管理

Linux是一个多用户多任务的操作系统&#xff0c;任何一个要使用系统资源的用户&#xff0c;都必须向系统管理员申请一个账户&#xff0c;然后用这个账户进入系统。 每个Linux用户至少属于一个用户组。 用户家目录home下&#xff0c;有各个用户分别创建的家目录&#xf…

vscode远程linux安装codelldb

在windows上使用vscode通过ssh远程连接linux进行c调试时&#xff0c;在线安装codelldb-x86_64-linux.vsix扩展插件失败&#xff0c;原因是linux服务器上的网络问题&#xff0c;所以需要进行手动安装。 首先在windows上下载&#xff1a; codelldb-x86_64-linux.vsix&#xff1b;…

Java NIO 详解

一、NIO简介 NIO 是 Java SE 1.4 引入的一组新的 I/O 相关的 API&#xff0c;它提供了非阻塞式 I/O、选择器、通道、缓冲区等新的概念和机制。相比与传统的 I/O 多出的 N 不是单纯的 New&#xff0c;更多的是代表了 Non-blocking 非阻塞&#xff0c;NIO具有更高的并发性、可扩…

11.9乘法器实验总结(流水线,for移位)

for循环乘法器 流水线乘法器 仿真的时候&#xff0c;注意把clk设置一个初始值 分析报告 电路图分析: 比对两种实现方式的RTL级电路图可以发现&#xff0c;for循环的乘法器本质为转为不断的循环累加&#xff0c;故最终电路长度很长&#xff0c;取决于循环&#xff0c;即累加的…

windows安装composer并更换国内镜像

第一步、官网下载 下载地址 Composer安装https://getcomposer.org/Composer-Setup.exe第二步、双击安装即可 第三步选择 php安装路径并配置path 第四步、 composer -v查看安装是否成功&#xff0c;出现成功界面 第五步、查看镜像地址并更换&#xff08;composer国内可能较慢…

线性代数本质系列(一)向量,线性组合,线性相关,矩阵

本系列文章将从下面不同角度解析线性代数的本质&#xff0c;本文是本系列第一篇 向量究竟是什么&#xff1f; 向量的线性组合&#xff0c;基与线性相关 矩阵与线性相关 矩阵乘法与线性变换 三维空间中的线性变换 行列式 逆矩阵&#xff0c;列空间&#xff0c;秩与零空间 克莱姆…

Rust语言基础:从Hello World开始

大家好&#xff0c;我是[lincyang]。 我们将一起探索Rust语言的基础&#xff0c;从最经典的程序入手——“Hello, World!”。 Rust简介 Rust是一种系统编程语言&#xff0c;由Mozilla赞助开发&#xff0c;旨在提供内存安全、并发性和实用性。它的设计思想强调安全性和性能&…

nodejs+vue+python+PHP+微信小程序-安卓- 电影在线订票系统的设计与实现-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

RabbitMQ传统数据持久化和Lazy queue的区别

问题引出&#xff1a; 在了解这个问题前我们需要一些前置知识&#xff1a; 关于MQ可靠性&#xff0c;在默认情况下&#xff0c;RabbitMQ会将接收到的信息保存在内存中以降低消息收发的延迟。这样会导致两个问题&#xff1a; 一旦MQ宕机&#xff0c;内存中的信息会丢失 内存空…