线性代数本质系列(一)向量,线性组合,线性相关,矩阵

本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇

向量究竟是什么?
向量的线性组合,基与线性相关
矩阵与线性相关

矩阵乘法与线性变换
三维空间中的线性变换
行列式
逆矩阵,列空间,秩与零空间
克莱姆法则
非方阵
点积与对偶性
叉积
以线性变换眼光看叉积
基变换
特征向量与特征值
抽象向量空间
快速计算二阶矩阵特征值
张量,协变与逆变和秩

文章目录

  • 前言
  • 向量究竟是什么?
  • 向量的线性组合,基于线性相关
  • 矩阵与线性相关

前言

天道中丁元英说过一句话:佛说,看山是山,看水是水,普通大众寄情山水之间时,如神一般的丁元英却早已看透文化属性;今天我们不研究这么高深的哲学,回到线性代数,向量,矩阵对于我来讲只不过是一堆数字,但切换到神的视角,他们却是几何与变换,瞬间让线性代数变得更加立体生动,今天我们就从几何的角度去探索线性代数的本质。

向量究竟是什么?

通过“究竟”一词可见,对于向量的含义,存在不同的解释,目前,主要有三种解释:

⑴从物理学家的角度看:向量是指向空间的箭头,它有两个属性:长度和方向,无论怎么移动他都是同一个向量。
三维空间中的向量

⑵从计算机角度看:向量是有序的数字列表,例如对于房价预测而言,房子的面积,房间数就可以看作是一个向量: [ 80 4 ] \begin{bmatrix}80\\4\end{bmatrix} [804]

⑶从数学家的角度看:向量可以是任何东西,只要具有向量和向量加法,标量和向量乘法这两种运算规律的事务都可以看作是向量

v ⃗ + w ⃗ \vec{v} +\vec{w} v +w

2 v ⃗ 2\vec{v} 2v

例如:
[ − 4 10 ] + [ 20 1 ] = [ 16 11 ] \begin{equation*} \begin{bmatrix} -4\\ 10 \end{bmatrix} +\begin{bmatrix} 20\\ 1 \end{bmatrix} =\begin{bmatrix} 16\\ 11 \end{bmatrix} \end{equation*} [410]+[201]=[1611]

2 ∗ [ 80 4 ] = [ 160 8 ] \begin{equation*} 2*\begin{bmatrix} 80\\ 4 \end{bmatrix} =\begin{bmatrix} 160\\ 8 \end{bmatrix} \end{equation*} 2[804]=[1608]

由于数学家的角度过于抽象,这就出现了开头讲的,换个角度看问题,从几何角度看待线性代数,对于向量而言,就是在特定坐标系下,以原点为起点,指向某个方向的箭头:
二维向量

三维向量

现在已经有了使用几何方式表达向量的方法,下面让我们从几何角度重新审视向量的两种运算:

对于 v ⃗ + w ⃗ \vec{v} +\vec{w} v +w 而言,移动w到v的末尾,连接v的头和w的尾就是结果向量。

在这里插入图片描述

对于 2 v ⃗ 2\vec{v} 2v 而言,向量的方向不变,长度变为原来的两倍,如果标量是小数,则是缩小向量的长度,如果是负数,则是反方向缩放向量的长度。
在这里插入图片描述

向量的线性组合,基于线性相关

基向量:

“单位“是数学中必不可少的概念,缺少单位,数字变得毫无意义,同样,对于使用几何表示向量而言,也有存在单位的概念,这就是“基向量”,它代表指向x,y轴,长度为1的向量,我们分别用 i ⃗ \vec{i} i j ⃗ \vec{j} j 表示。
坐标基

有了基的概念后,向量的表示可以转换成以基为参照,例如向量 [ 3 − 2 ] \begin{bmatrix} 3\\ -2 \end{bmatrix} [32],则可以表示成: 3 ∗ i ⃗ + 2 ∗ j ⃗ 3*\vec{i} +2*\vec{j} 3i +2j
在这里插入图片描述

这里需要注意,前面我们选择指向x,y轴,且长度为1的向量作为基向量,但也可以选择不同的基,不同的基代表不同的坐标系,则对于一个向量而言,它代表不同的几何意义,例如,选择下面的v和w向量作为基向量时,向量 [ 1.5 − 0.62 ] \begin{bmatrix} 1.5\\ -0.62 \end{bmatrix} [1.50.62]代表的几何形状与 i ⃗ \vec{i} i j ⃗ \vec{j} j 为基向量时的形状是不一样的。
在这里插入图片描述

在这里插入图片描述

向量线性组合:

无论选择什么样的基向量,向量都可以写成更一般的形式: a v ⃗ + b w ⃗ a\vec{v} +b\vec{w} av +bw 我们称为向量的线性组合,a,b是标量,也称为缩放因子,v和w是向量,选择不同的缩放因子,向量的线性组合可以表示整个向量空间,也就是生成的向量可以到达平面中所有点。
不同标量值,结果向量落在不同点

但如果两个向量恰好共线时,则向量组合后的结果向量只能落在该直线上,我们称共线的两个向量是线性相关的,否则是线性无关。
在这里插入图片描述

更特殊地,当这两个向量都是0向量时,则向量组合后的结果向量只能落在原点上。

概括一下,所有可以被给定向量,用线性组合来表示的那些向量的集合,被称为给定向量张成的空间,两个不共线的向量,在二维空间中,其线性组合所张成的空间是整个二维空间;而在三维空间中,其张成的空间是三维空间中的一个面。
线性相关

线性无关

在三维空间中,三个向量的线性组合,如果其中一个向量在另两个向量张成的平面内,我们称该向量与其他两个向量线性相关,这三个向量的线性组合仍然是一个平面,只有三个向量互不线性相关时,那么这三个向量的线性组合才能张成整个三维空间。

矩阵与线性相关

矩阵:

先说结论:前面讲的向量可以视为一种带箭头的几何结构,那么矩阵就可以视为一种对几何的变换。

在线性代数中,变换是一种函数,将输入映射成输出,输入是向量,输出也是向量,同理,当输入是矩阵时,可以把矩阵分解成多个向量,那么输出也就是矩阵,变换有很多种,线性代数中只讨论线性变换,线性变换要求,任意直线变换后仍然是直线,且原点位置变换后保持不变,从几何角度看,线性变换就是拉伸,缩放,旋转。

下图变换后,直线变弯曲了,所以是非线性变换
非线性变换

下图变换后,原点位置变了,所以属于非线性变换
非线性变换

那我们如何求一个向量经过变换后的向量坐标呢?假设现有一个向量,在原始坐标系下可以表示成: v ⃗ = ( − 1 ) i ⃗ + 2 ∗ j ⃗ \vec{v} =( -1)\vec{i} +2*\vec{j} v =(1)i +2j
在这里插入图片描述

现在对向量v施加一个线性变换,根据线性变换的特性,变换后,网格仍然平行且间隔均等,假设两个基向量变换后的坐标如下图所示,向量v与两个基向量经过相同的变换变成新的基向量,那么,向量v经过变换后的向量仍然可以表示成:
v ⃗ t r a n s f o r m e d = ( − 1 ) i ⃗ t r a n s f o r m e d + 2 ∗ j t r a n s f o r m e d \begin{equation*} \vec{v}{}_{transformed} =( -1)\vec{i}{}_{transformed} +2*j{}_{transformed} \end{equation*} v transformed=(1)i transformed+2jtransformed
只不过基向量变成了变换后的基向量。
在这里插入图片描述

如上图
i ⃗ t r a n s f o r m e d = [ 1 − 2 ] \vec{i}{}_{transformed} =\begin{bmatrix} 1\\ -2 \end{bmatrix} i transformed=[12], j ⃗ t r a n s f o r m e d = [ 3 0 ] \vec{j}{}_{transformed} =\begin{bmatrix} 3\\ 0 \end{bmatrix} j transformed=[30]

变换后的v就等于: v ⃗ = ( − 1 ) [ 1 − 2 ] + 2 ∗ [ 3 0 ] = [ 5 2 ] \vec{v} =( -1)\begin{bmatrix} 1\\ -2 \end{bmatrix} +2*\begin{bmatrix} 3\\ 0 \end{bmatrix} =\begin{bmatrix} 5\\ 2 \end{bmatrix} v =(1)[12]+2[30]=[52]

也就是说,如果我们知道两个基向量变换后的向量,那么求任何一个向量经过变换后的向量的过程可以用下图所表示:
在这里插入图片描述

更进一步的,我们将两个基向量变换后的坐标向量用矩阵的形式组织起来,这个矩阵就是线性变换矩阵T。
在这里插入图片描述

对于任意一个向量A,例如, [ 7 2 ] \begin{bmatrix} 7\\ 2 \end{bmatrix} [72],求该线性变换T对该向量的作用时,只需要用矩阵与向量相乘即可: A t r a n s f o r m e d = [ 3 2 − 2 1 ] [ 7 2 ] = 7 [ 3 − 2 ] + 2 [ 2 1 ] A_{transformed} =\begin{bmatrix} 3 & 2\\ -2 & 1 \end{bmatrix}\begin{bmatrix} 7\\ 2 \end{bmatrix} =7\begin{bmatrix} 3\\ -2 \end{bmatrix} +2\begin{bmatrix} 2\\ 1 \end{bmatrix} Atransformed=[3221][72]=7[32]+2[21]

如果换个视角,反过来看,如果给出一个矩阵乘法: [ 3 2 − 2 1 ] [ 7 2 ] \begin{bmatrix} 3 & 2\\ -2 & 1 \end{bmatrix}\begin{bmatrix} 7\\ 2 \end{bmatrix} [3221][72],我们可以把矩阵第一列 [ 3 − 2 ] \begin{bmatrix} 3\\ -2 \end{bmatrix} [32]当作新的基向量 i ⃗ \vec{i} i ,把矩阵的第二列 [ 2 1 ] \begin{bmatrix} 2\\ 1 \end{bmatrix} [21]当作新的基向量 j ⃗ \vec{j} j ,根据向量的几何表示,向量 [ 7 2 ] \begin{bmatrix} 7\\ 2 \end{bmatrix} [72]用新的基向量表成: i ⃗ \vec{i} i 向正方向放大7倍, j ⃗ \vec{j} j 向正方向放大2倍,将变换后的向量相加就形成了结果向量。
在这里插入图片描述

再举个例子,看看逆时针旋转90度的变换矩阵是什么, i ⃗ \vec{i} i [ 1 0 ] \begin{bmatrix} 1\\ 0 \end{bmatrix} [10]变成 [ 0 1 ] \begin{bmatrix} 0\\ 1 \end{bmatrix} [01] j ⃗ \vec{j} j [ 0 1 ] \begin{bmatrix} 0\\ 1 \end{bmatrix} [01]变成 [ − 1 0 ] \begin{bmatrix} -1\\ 0 \end{bmatrix} [10],所以该变换矩阵为: [ 0 − 1 1 0 ] \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} [0110]

到此,就已经证明了我们在开头所说的:矩阵是一种线性变换。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/141849.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Rust语言基础:从Hello World开始

大家好,我是[lincyang]。 我们将一起探索Rust语言的基础,从最经典的程序入手——“Hello, World!”。 Rust简介 Rust是一种系统编程语言,由Mozilla赞助开发,旨在提供内存安全、并发性和实用性。它的设计思想强调安全性和性能&…

nodejs+vue+python+PHP+微信小程序-安卓- 电影在线订票系统的设计与实现-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

RabbitMQ传统数据持久化和Lazy queue的区别

问题引出: 在了解这个问题前我们需要一些前置知识: 关于MQ可靠性,在默认情况下,RabbitMQ会将接收到的信息保存在内存中以降低消息收发的延迟。这样会导致两个问题: 一旦MQ宕机,内存中的信息会丢失 内存空…

深入理解强化学习——马尔可夫决策过程:马尔可夫过程和马尔科夫链

分类目录:《深入理解强化学习》总目录 马尔可夫过程是一组具有马尔可夫性质的随机变量序列 S 1 , S 2 , ⋯ , S t S_1, S_2, \cdots, S_t S1​,S2​,⋯,St​,其中下一个时刻的状态 S t 1 S_{t1} St1​只取决于当前状态 S t S_t St​ 。我们设状态的历史…

微信小程序display常用属性和子元素排列方式介绍

wxss中display常用显示属性与css一致,介绍如下: 针对元素本身显示的属性: displayblock,元素显示换行displayinline,元素显示换行,但不可设置固定的宽度和高度,也不可设置上下方向的margin和p…

万宾科技智能传感器EN100-C2有什么作用?

在日常生活中井盖是一种常见的城市设施,但井盖出现问题可能会对人们的生活造成什么影响呢?移位或老化的井盖可能会威胁人们的安全,同时也会影响城市生命线的正常运行。然而智能井盖的出现为解决这些问题提供了有效的应对方案。 WITBEE万宾智能…

宋浩高等数学笔记(二)导数与微分

目录 2.1导数的概念 2.2函数的求导法则 2.3高阶导数 2.4隐函数求导and参数方程求导 考研数学一大纲中对本章的要求: 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程&#…

[工业自动化-18]:西门子S7-15xxx编程 - 软件编程 - PLC用于工业领域的嵌入式系统:硬件原理图、指令系统、系统软件架构、开发架构等

目录 前言: 一、PLC的硬件电路原理 1.1 硬件框图 1.2 硬件模块详解 (1)CPU (2)存储器 (3)输入/输出(I/O)模块 (4)编程器 (5&a…

[C++]Leetcode17电话号码的字母组合

题目描述 解题思路: 这是一个深度优先遍历的题目,涉及到多路递归,下面通过画图和解析来分析这道题。 首先说到的是映射关系,那么我们就可以通过一个字符串数组来表示映射关系(字符串下标访问对应着数字映射到对应的…

MyBatis 知识总结

1 MyBatis 1.1 简介 持久层框架,用于简化JDBC开发 JavaEE三层架构:表现层、业务层、持久层 表现层:做页面展示 业务层:做逻辑处理 持久层:负责将数据保存到数据库的那一层代码 框架:半成品软件&#xff0…

DefaultListableBeanFactory

DefaultListableBeanFactory 是一个完整的、功能成熟的 IoC 容器,如果你的需求很简单,甚至可以直接使用 DefaultListableBeanFactory,如果你的需求比较复杂,那么通过扩展 DefaultListableBeanFactory 的功能也可以达到&#xff0c…

找工作在哪个app找比较真实可靠

吉鹿力招聘网是一款找工作比较真实靠谱的app。吉鹿力招聘网是一个新兴的人脉社交招聘平台,靠谱而且需求明确,可以依靠自己或者身边朋友推荐。在吉鹿力招聘网上可以有很多前辈的职场分享和行业八卦,对于刚毕业的大学生而言,很有参考…

2024怎么自学软件测试?自动化测试?测试老鸟总结,少走弯路...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、自学软件测试怎…

【vue+baiduMap】百度地图绘制多边形区域

1、创建百度地图应用&#xff0c;获取权限ak 百度地图服务台 Ps.本项目里按钮等基础控件使用的是element-ui版本控件 2、项目内全局引入 index.html页面插入引用代码&#xff1a; <scriptsrc"//api.map.baidu.com/api?v2.0&ak你的密钥"type"text/ja…

数字化催生低代码开发浪潮,管理系统也能一键生成

近年来&#xff0c;数字经济以无比迅猛的势头崛起&#xff0c;成为引领全球经济变革的重要引擎。在这个数字化趋势日益明显的时代&#xff0c;企业的数字转型已经成为提高竞争力、适应市场需求的迫切需要。 随着科技的飞速发展&#xff0c;数字技术已经渗透到各个领域&#xff…

详细介绍‘’由于找不到msvcr110.dll 无法继续执行简单处理方法

分享关于“msvcp110.dll丢失的4个解决方案”的主题。在我们日常使用电脑的过程中&#xff0c;可能会遇到各种各样的问题&#xff0c;而msvcp110.dll丢失就是其中之一。那么&#xff0c;msvcp110.dll丢失是什么意思呢&#xff1f;又是什么原因导致了这个问题的出现呢&#xff1f…

详细记一下jvm调优整过程

cpu占用过高 cpu占用过高要分情况讨论&#xff0c;是不是业务上在搞活动&#xff0c;突然有大批的流量进来&#xff0c;而且活动结束后cpu占用率就下降了&#xff0c;如果是这种情况其实可以不用太关心&#xff0c;因为请求越多&#xff0c;需要处理的线程数越多&#xff0c;这…

2019年12月 Scratch(一级)真题解析#中国电子学会#全国青少年软件编程等级考试

一、单选题(共25题,每题2分,共50分) 第1题 下列关于舞台的描述,不正确的是? A:Scratch只能设置一个舞台 B:舞台不能进行编程 C:舞台可以有多个背景 D:舞台上可以有角色 答案:B A选项,scratch只有一个舞台,B选项,可以在舞台区进行编程,例如切换背景,设置背景…

【OpenCV实现图像:用OpenCV图像处理技巧之巧用直方图】

文章目录 概要前置条件统计数据分析直方图均衡化原理小结 概要 图像处理是计算机视觉领域中的重要组成部分&#xff0c;而直方图在图像处理中扮演着关键的角色。如何巧妙地运用OpenCV库中的图像处理技巧&#xff0c;特别是直方图相关的方法&#xff0c;来提高图像质量、改善细…

【云备份项目总结】客户端篇

项目总结 整体回顾util.hppdata.hppcloud.hpp 代码 客户端的代码与服务端的代码实现有很多相似之处&#xff0c;我们也只编写一个简单的客户端代码。 整体回顾 客户端要实现的功能是&#xff1a;对指定文件夹中的文件自动进行备份上传。但是并不是所有的文件每次都需要上传&am…