深度学习1【吴恩达】

视频链接:1.5 关于这门课_哔哩哔哩_bilibiliicon-default.png?t=N7T8https://www.bilibili.com/video/BV1FT4y1E74V?p=5&spm_id_from=pageDriver&vd_source=3b6cdacf9e8cb3171856fe2c07acf498

视频中吴恩达老师所有的话语收录:

机器学习初学者-AI入门的宝典 (ai-start.com)icon-default.png?t=N7T8http://www.ai-start.com/这里重点感谢制作上面公益性网站的人,感谢你们花费大量精力翻译,话语收录,祝福你们生活幸福,事业有成。

我为了方便,在听取吴恩达老师的课程之后,根据自己的理解,删除掉自己认为无用(或者简单)的话语,copy你们的部分文本,制作的深度学习笔记。如涉及到侵权问题,请与我联系!!!

如果有人看到了我的博客,我感到非常荣幸。强烈建议您先看吴恩达老师的课程,针对每一节课程看收录笔记,如果有什么不懂的,可以再看我的博客,希望我整理的内容对您有所帮助。

一、第一周课程 

1.1、什么是神经网络

“深度学习”指的是训练神经网络。

以一个房价预测的例子开始:

假设有一个六间房屋的数据集(包含房屋的面积、房屋价格)。现在想要找到一个函数,根据房屋面积预测房价的函数。此时可以利用线性回归,用这些数据来拟合一条直线,这条粗的蓝线就是想要的函数。如下图所示

图1.1.1

也许可以把这个房屋加个拟合函数看成是一个非常简单的神经网络。我们把房屋的面积作为神经网络的输入,称之为x,通过这个节点(这个小圈圈),输出了预测价格,用y表示。这个小圆圈就是一个独立的神经元。此时的网络实现了上边这个函数的功能。这个神经元所做的就是输入面积完成线性运算,取不小于0的值最后得到预测价格。

图1.1.2

图1.1中的蓝线(开始为0,后面是一条直线),这种函数被称作ReLU函数(全称是修正线性单元,“修正”指的是取不小于0的值)。

这是一个单神经元网络,是规模很小的神经网络。大一点的神经网络,是把这些单个神经元堆叠起来形成的,比如说:

不仅仅可以用房屋的面积来预测价格,现在你还有一些房屋的其它特征,知道了一些别的信息,比如卧室的数量。这样记下来,你可能想到有一个很重要的因素会影响房屋价格,就是家庭人数,这个性质和面积大小相关,还有卧室的数量能否满足住户的家庭人数需求。你可知道邮编,或许能作为一个特征说明了步行化程度,另外根据邮政编码还能体现富裕程度、附近学校的质量。我画的每一个小圈圈,都可能是一个ReLU,即修正线性单元或者其它的不那么线性的函数,基于房屋面积和卧室数量估算家庭人口、基于邮编可以评估步行化程度、学校质量。最后你可能会想,人们愿意在房屋上花费多少钱,和他们关注什么息息相关。在这个例子中,家庭人口、步行化程度以及学校质量,都能帮助你预测房屋的价格。在这个例子中x是所有的这四个输入,y是预测的价格,把这些独立的神经元叠加起来,现在有了一个稍微大一点的神经网络,当你实现它之后,你要做的只是输入x,就能得到输出y。不管训练集有多大,所有的中间过程它都会自己完成。

图1.1.3

那么你实际上做的就是,这有四个输入的神经网络,输入的特征是房屋面积、卧室的数量,邮政编码和周边的富裕程度。已知这些输入的特征,神经网络的工作就是预测对应的价格。同时也注意到这些圈圈,在一个神经网络中它们被叫做“隐藏单元”。每个的输入都同时来自四个特征,此如说我们不会具体说,第一个节点表示家庭人口,或者说家庭人口仅取决于特征x1和x2,我们会这么说,神经网络你自己决定这个节点是什么,我们只给你四个输入特征随便你怎么计算。因此我们说第一层是输入层。中间的这一层,在神经网络中连接数是很高的,因为输入的每个特征,都连接到了中间的每个圈圈,值得注意的是神经网络,只有你喂给它是够多的数据(关于和y的数据),给到足够的x、y训练祥本,神经网络非常擅长于计算从x到y的精准映射函数,这就是一个基本的神经网络。你可能发现自己的神经网络,在监督学习的环境下是如此有效和强大。

图1.1.4

 1.2、用神经网络进行监督学习

监督学习是机器学习的一种。

在监督学习中,输入x,会习得一个函数,映射出y。重要的是,需要机智的选择x和y,才能解决待定问题。

图1.2.1 

其中1、2使用的是 Standard NN(通用标准的神经网络架构);3图像领域里我们经常应用的是卷积神经网络(CNN);4对于序列数据,例如音频中含有时间成分,音频是随着时间播放的,所以音频很自然地被表示为一维时间序列,对于序列数据经常使用循环神经网络(RNN);4、5语言,比如英语和汉语字母或单词都是逐个出现的,所以语言最自然的表示方式也是序列数据,使用更复杂的RNNS;6对于更复杂的应用,比如无人驾驶,你有一张图片可能需要CNN ”卷积神经网络结构” 架构去处理,雷达信息则不一样,需要更加复杂的 混合的神经网络结构。

所以为了更具体地说明,标准的CNN和RNN结构是什么,请看下图:

图1.2.2 

图1.2.3 

图1.2.4 

 数据分为两种,结构化数据、非结构化数据。

图1.2.5 

二、第二周课程

这周我们将学习神经网络的基础知识,其中需要注意的是,当实现一个神经网络的时候,我们需要知道一些非常重要的技术和技巧。例如有一个包含个样本的训练集,你很可能习惯于用一个for循环来遍历训练集中的每个样本,但是当实现一个神经网络的时候,我们通常不直接使用for循环来遍历整个训练集,所以在这周的课程中你将学会如何处理训练集。

另外在神经网络的计算中,通常先有一个叫做前向暂停(forward pause)或叫做前向传播(foward propagation)的步骤,接着有一个叫做反向暂停(backward pause) 或叫做反向传播(backward propagation)的步骤。所以这周我也会向你介绍为什么神经网络的训练过程可以分为前向传播和反向传播两个独立的部分。

在课程中我将使用逻辑回归(logistic regression)来传达这些想法,以使大家能够更加容易地理解这些概念。即使你之前了解过逻辑回归,我认为这里还是有些新的、有趣的东西等着你去发现和了解,所以现在开始进入正题。

2.1 二分分类(logistic回归)

logistc回归是一个用于二分类(binary classification)的算法。

2.2 logistic回归的假设函数

2.3 logistic回归的损失函数

2.4 梯度下降法

我们已经学习了logistic回归模型,也知道了损失函数(是衡量单一训练样例的效果)、成本函数(用于在全部训练集上来衡量参数w和b的效果)。下面我们讨论如何使用梯度下降法来训练或学习训练集上的参数w和b。

回顾一下,第一行是是熟悉的logistic回归算法,第二行是成本函数J(是参数w和b的函数),他是一个平均值,即1/m的损失函数之和。损失函数可以衡量算法的效果,每一个训练样例都输出y^(i),把它和真值标签y (i)进行比较,等于右边展开的完整的公式。

成本函数衡量了参数w和b在训练集上的效果,要习得合适的参数w和b,我们可以想到求出使得成本函数J(w, b)尽可能小的w和b,下面来看看梯度下降法:

以下内容可以直接看笔记原文,从梯度下降法的形象化说明开始看!!!

修改1:

我们之所以使用logistic回归的这个特定成本函数J(w.b) ,是因为它是凸函数。为了找到更好的参数值,我们要做的就是用某初始值初始化w和b。

补充2:

对这张图片进行补充

梯度下降法所做的就是从初始点开始,朝最陡的下坡方向走一 步,在梯度下降一步后,或许在那里停下,因为它正试图沿着最快下降的方向往下走,或者说尽可能快地往下走,这是梯度下降的一次迭代。两次迭代或许会到达那里,或者二次...等等。下图中,隐藏在图上的曲线很有希望收敛到这个全局最优解或接近全局最优解。

2.5 导数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/135143.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CorelDRAW2023中文免费版矢量图设计软件

设计工作经验丰富的人一定对比过多种设计软件,在对众多矢量图设计软件进行对比之后,多数资深设计师认为CorelDRAW的专业性、便捷性以及兼容性的综合表现更好,而且软件还配置了海量艺术笔,这让工作成果更为出众,因此更愿…

Clickhouse学习笔记(8)—— 建表优化

数据类型 时间字段 建表时能用数值型或日期时间类型(DateTime)表示的字段就不要用字符串 因为clickhouse进行分区时一般使用时间字段来进行分区,而将时间字段使用DateTime表示,不需要经过函数转换处理,执行效率高、…

[Android]_[初级]_[配置gradle的环境变量设置安装位置]

场景 在开发Android项目的时候, gradle是官方指定的构建工具。不同项目通过wrapper指定不同版本的gradle。随着项目越来越多,使用的gradle版本也增多,导致它以来的各种库也增加,系统盘空间不足,怎么解决? 说明 grad…

.Net-C#文件上传的常用几种方式

1.第一种上传方式,基本通用于.net所有的框架 [HttpPost][Route("Common/uploadFile1")]public string uploads(){HttpContextBase context (HttpContextBase)Request.Properties["MS_HttpContext"];//获取传统contextHttpRequestBase request context.Re…

CUMT-----Java课后第六章编程作业

文章目录 一、题11.1 问题描述1.2 代码块1.3 运行截图 二、题22.1 问题描述2.2 代码块2.3 运行截图 一、题1 1.1 问题描述 (1)创建一个用于数学运算接口,算数运算加、减、乘和除都继承该接口并实现具体的算数运算。(2)编写一个测试类进行运行测试。 1.2 代码块 p…

服务器中了locked勒索病毒怎么处理,locked勒索病毒解密,数据恢复

近几年,网络应用技术得到了迅速发展,越来越多的企业开始走向数字化办公,极大地为企业的生产运营提供了帮助,但是网络技术的发展也为网络安全埋下隐患。最近,locked勒索病毒非常嚣张,几乎是每隔两个月就会对…

美团2024届秋招笔试第二场编程真题-小美的数组构造

分析:暴力角度看,因为数组a和b总和一样,所以实际上是将总和m划分为n个数字,且每个数字都和a数组不一样的方案数。当然会超时。从数据角度看,平方级别算法是可以的。 其实用动态规划的四步法分析起来还是很简单的&…

Python实战 | 使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别

专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https:/…

EXCEL中将UTC时间戳转为日期格式(精确到秒)

UTC时间戳的格式通常是一个整数,表示从1970年1月1日00:00:00 UTC到当前时间的总秒数。它可以以秒或毫秒为单位表示。例如,如果当前时间是2023年3月17日 12:34:56 UTC,则对应的UTC时间戳为1679839496(以秒为单位)或1679…

通过防火墙禁止访问指定网站(个人电脑,Windows系统)

背景 近年沉迷B站视频不能自拔,使用了诸多手段禁用,都很容易破戒。为了彻底杜绝B站的使用,决定手动进行设置。在ChatGPT和文心一言提问,得到了以下四种方法(按个人认为的戒断水平由低到高排序):…

分享10个地推拉新和网推拉新app推广接单平台,一手接任务平台

文章首推平台:”聚量推客“ 官方邀请码000000 从事地推、拉新、推广这一类型的工作,是一定要有稳定的一手接单平台的,因为在瞬息万变的拉新推广市场中,很多APP应用的推广拉新存在周期性,有可能这个月还在的拉新项目&a…

STM32F407: CMSIS-DSP库的移植(基于库文件)

目录 1. 源码下载 2. DSP库源码简介 3.基于库的移植(DSP库的使用) 3.1 实验1 3.2 实验2 4. 使用V6版本的编译器进行编译 上一篇:STM32F407-Discovery的硬件FPU-CSDN博客 1. 源码下载 Github地址:GitHub - ARM-software/CMSIS_5: CMSIS Version 5…

开发知识点-Vue-Electron

Electron ElectronVue打包.exe桌面程序 ElectronVue打包.exe桌面程序 为了不报错 卸载以前的脚手架 npm uninstall -g vue-cli安装最新版脚手架 cnpm install -g vue/cli创建一个 vue 随便起个名 vue create electron-vue-example (随便起个名字electron-vue-example)进入 创建…

中国国内机场信息集成系统厂家现状情况

机场信息集成系统在本世纪初进入中国市场,早期的信息集成系统提供商以外企为主,后来国内企业迅速发展。但在2008年前,民航总局设立了机场信息系统的入门门槛,也就是需要民航空管工程及机场弱电系统建设资质要求,该要求…

MySQL 约束特殊查询

MySQL 约束&特殊查询 文章目录 MySQL 约束&特殊查询1. 数据库约束1.1 约束类型1.2 NULL约束1.3 NUIQUE:唯一约束1.4 DEFAULT:默认值约束1.5 PRIMARY KEY:主键约束1.6 FOREIGN KEY:外键约束1.7 CHECK约束 2. 表的关系2.1 一…

IPV4过渡IPV6的关键技术NAT(Network AddressTranslation,网络地址转换)

文章目录 NAT的由来NAT基本工作机制NAT技术的分类推荐阅读 NAT的由来 随着物联网、工业互联网、5G的快速发展,网络应用对IP地址的需求呈现出爆炸式的增长。 然而,早在2011年,ICANN就发布公告称最后五组IP地址已分配完毕,已无IPv4…

常微分方程

什么是常微分方程: 未知函数为单变量(一元)函数 例1 设有温度为100摄氏度的物体放置在20摄氏度的空气冷却,求物体温度随时间 变化 的规律。 解:设t时刻物体温度为T 对两边求共积分 设比例系数为k>0 令C, 微分方程: 联系着…

如何删除英文键盘ENG

1.打开设置:时间和语言2.选择语言,查看首选列表,如果有多种语言,删除其他的语言就可以,如果只有中文,需要点击添加语言 3.选择安装的语言 这个时候点击英语,在选项中就可以看到它的默认键盘&…

【博士每天一篇文献-算法】Imposing Connectome-Derived Topology on an Echo State Network

阅读时间:2023-11-5 1 介绍 年份:2022 作者:Jacob Morra, Mark Daley 西部大学 期刊:2022 International Joint Conference on Neural Networks (IJCNN) 引用量:3 研究了果蝇连接图的拓扑结构对混沌时间序列预测中回…

【信息安全原理】——传输层安全(学习笔记)

📖 前言:为保证网络应用,特别是应用广泛的Web应用数据传输的安全性(机密性、完整性和真实性),可以在多个网络层次上采取安全措施。本篇主要介绍传输层提供应用数据安全传输服务的协议,包括&…