点云配准--对称式ICP

对称式ICP

写在前面的话

针对于局部平面不完美的情况,提出了一种对称式ICP目标函数,相较于传统的ICP方法,增大了收敛域,提高了收敛速度。论文理论说明不甚清楚,实验较少,但代码开源。

理论

对称目标函数

在icp中对于一对对应点p,q:在点到法线的度量中:
( p − q ) ⋅ n q (3) (p-q) \cdot n_q\tag{3} (pq)nq(3)
只有当局部表面是一个完美平面时上式才成立,因此提出一种标准对称式度量:
( p − q ) ⋅ ( n p + n q ) . (4) (p-q) \cdot\left(n_p+n_q\right) .\tag{4} (pq)(np+nq).(4)
在这里插入图片描述

如图1所示,只要p,q位于圆弧上,此时向量(p-q)垂直于向量(np-nq),等式4恒成立。
在这里插入图片描述

图2中,当 p 相对于 q 移动时,只要存在某个与 p、q、np 和 nq 一致的圆弧,性质 (p − q) · (np + nq ) = 0 就成立。点到面:当 p 位于 q 和 nq 定义的平面中时,无论 np 如何,点到平面度量为零。
对于等式4而言,在 3D 中也成立:只要 p 和 q 及其法线与某个圆柱体一致,方程 4 的计算结果就为零。
此外,4.1 节研究了一个不同的属性:只要 p 和 q 与位于它们之间的局部二阶曲面一致,方程 4 也成立。虽然此约束仍然为 (p, np ) 相对于 (q, nq ) 移动提供了更大的自由度,但它是比点到平面度量提供的“更有用”的自由形式。(增大了收敛域,更容易找到全局最优变换)。
对于目标函数而言,大多数先前的工作仅将刚体变换应用于其中一个表面(例如,点到面中的变换仅应用于 p),但我们考虑变换的对称形式:我们想象在一个固定的“中性”坐标中(既不在p坐标系也不在q坐标系中)评估度量,并对 P 和 Q 应用相反的变换。因此,我们可以将对称目标制定为:
E s y m m − R N = ∑ i [ ( R i − R − 1 q i + t ) ⋅ ( R n p , i + R − 1 n q , i ) ] 2 , (5) \mathcal{E}_{s y m m-R N}=\sum_i\left[\left(\mathrm{R}_i-\mathrm{R}^{-1} q_i+t\right) \cdot\left(\mathrm{R} n_{p, i}+\mathrm{R}^{-1} n_{q, i}\right)\right]^2,\tag{5} EsymmRN=i[(RiR1qi+t)(Rnp,i+R1nq,i)]2,(5)
我们还探索了该目标的一个更简单的版本,其中法线不旋转。也就是说,每个点对的最小化方向保持固定,而点本身沿相反方向旋转:
E s y m m = ∑ i [ ( R i − R − 1 q i + t ) ⋅ ( n p , i + n q , i ) ] 2 (6) \mathcal{E}_{s y m m}=\sum_i\left[\left(\mathrm{R}_i-\mathrm{R}^{-1} q_i+t\right) \cdot\left(n_{p, i}+n_{q, i}\right)\right]^2\tag{6} Esymm=i[(RiR1qi+t)(np,i+nq,i)]2(6)
为什么这是一个合理的简化?考虑二维中两个单位长度向量的总和。对向量应用相反的旋转可以保留它们的总和的方向,以便每个点对对目标的两个变体的贡献在一定程度上是相同的。在 3D 中,并非所有旋转轴都如此,但当 np 接近 nq 时,这一点也接近正确。 4.3 节中的实验表明,两个目标导致相似的收敛,但 Esymm 导致更简单的推导和实现。因此,本文的其余部分采用 Esymm 作为对称目标。

线性化

我们从 Rodrigues 旋转公式开始的线性化,以了解旋转 R 对向量 v 的影响:
R v = v cos ⁡ θ + ( a × v ) sin ⁡ θ + a ( a ⋅ v ) ( 1 − cos ⁡ θ ) (7) \mathrm{R} v=v \cos \theta+(a \times v) \sin \theta+a(a \cdot v)(1-\cos \theta)\tag{7} Rv=vcosθ+(a×v)sinθ+a(av)(1cosθ)(7)
其中 a 和 θ 是旋转轴和角度。我们观察到,(7) 中的最后一项与增量旋转角 θ 成二次方,因此我们将其丢弃以进行线性化:
R v ≈ v cos ⁡ θ + ( a × v ) sin ⁡ θ = cos ⁡ θ ( v + ( a ~ × v ) ) , (8) \begin{aligned} \mathrm{R} v & \approx v \cos \theta+(a \times v) \sin \theta \\ & =\cos \theta(v+(\tilde{a} \times v)), \end{aligned}\tag{8} Rvvcosθ+(a×v)sinθ=cosθ(v+(a~×v)),(8)

where a ~ = a tan ⁡ θ \tilde{a}=a \tan \theta a~=atanθ. Substituting into (6),
E symm  ≈ ∑ i [ cos ⁡ θ ( p i − q i ) ⋅ n i + cos ⁡ θ ( a ~ × ( p i + q i ) ) ⋅ n i + t ⋅ n i ] 2 = ∑ i cos ⁡ 2 θ [ ( p i − q i ) ⋅ n i + ( ( p i + q i ) × n i ) ⋅ a ~ + n i ⋅ t ~ ] 2 , (9) \begin{aligned} \mathcal{E}_{\text {symm }} \approx & \sum_i\left[\cos \theta\left(p_i-q_i\right) \cdot n_i+\right. \\ & \left.\cos \theta\left(\tilde{a} \times\left(p_i+q_i\right)\right) \cdot n_i+t \cdot n_i\right]^2 \\ =\sum_i \cos ^2 \theta & {\left[\left(p_i-q_i\right) \cdot n_i+\right.} \\ & \left.\left(\left(p_i+q_i\right) \times n_i\right) \cdot \tilde{a}+n_i \cdot \tilde{t}\right]^2, \end{aligned}\tag{9} Esymm =icos2θi[cosθ(piqi)ni+cosθ(a~×(pi+qi))ni+tni]2[(piqi)ni+((pi+qi)×ni)a~+nit~]2,(9)
其中 n i = n p , i + n q , i n_i=n_{p, i}+n_{q, i} ni=np,i+nq,i and t ~ = t / cos ⁡ θ \tilde{t}=t / \cos \theta t~=t/cosθ。现在,我们对目标进行额外的近似加权 1/cos2 θ ,对于较小的 θ ,该值接近 1。 为了数值稳定性进一步考虑归一化,等式9变为如下形式:
∑ i [ ( p ~ i − q ~ i ) ⋅ n i + ( ( p ~ i + q ~ i ) × n i ) ⋅ a ~ + n i ⋅ t ~ ] 2 (10) \sum_i\left[\left(\tilde{p}_i-\tilde{q}_i\right) \cdot n_i+\left(\left(\tilde{p}_i+\tilde{q}_i\right) \times n_i\right) \cdot \tilde{a}+n_i \cdot \tilde{t}\right]^2\tag{10} i[(p~iq~i)ni+((p~i+q~i)×ni)a~+nit~]2(10)
where p ~ i = p i − p ˉ \tilde{p}_i=p_i-\bar{p} p~i=pipˉ and q ~ i = q i − q ˉ \tilde{q}_i=q_i-\bar{q} q~i=qiqˉ. This is a least-squares problem in a ~ \tilde{a} a~ and t ~ \tilde{t} t~, and the final transformation from P \mathcal{P} P to Q Q Q is:
trans ⁡ ( q ˉ ) ∘ rot ⁡ ( θ , a ~ ∥ a ~ ∥ ) ∘ trans ⁡ ( t ~ cos ⁡ θ ) ∘ rot ⁡ ( θ , a ~ ∥ a ~ ∥ ) ∘ trans ⁡ ( − p ˉ ) , (11) \operatorname{trans}(\bar{q}) \circ \operatorname{rot}\left(\theta, \frac{\tilde{a}}{\|\tilde{a}\|}\right) \circ \operatorname{trans}(\tilde{t} \cos \theta) \circ \operatorname{rot}\left(\theta, \frac{\tilde{a}}{\|\tilde{a}\|}\right) \circ \operatorname{trans}(-\bar{p}),\tag{11} trans(qˉ)rot(θ,a~a~)trans(t~cosθ)rot(θ,a~a~)trans(pˉ),(11)
where θ = tan ⁡ − 1 ∥ a ~ ∥ \theta=\tan ^{-1}\|\tilde{a}\| θ=tan1a~.
理论到此结束,后面我会对代码进行分析测试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/111440.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

提高微星笔记本Linux下散热性能,MSI-EC 驱动新补丁发布

导读近日消息,今年早些时候,Linux 6.4 中添加了 MSI-EC 驱动程序,允许对 Linux 系统微星笔记本电脑进行更多控制。 MSI-EC 驱动程序近日迎来新补丁,为微星笔记本带来 Cooler Boost 功能。该功能允许提高笔记本电脑的风扇转速&…

洞见UI自动化测试

随着软件行业的不断发展,建立一个完善的自动化测试体系变得至关重要。自动化测试包括三个方面:UI前端界面,Service服务契约和Unit底层单元如下图: 越是底层的测试,运行速度越快,时间开销越少,金…

设计模式——单例模式详解

目录 设计模式类型单例模式单例模式方式饿汉式静态常量方式静态代码块形式 懒汉式线程不安全(不推荐)懒汉式优化(不推荐) 双重检查(推荐方式)静态内部类(推荐方式)枚举方式&#xff…

Docker(1)——安装Docker以及配置阿里云镜像加速

目录 一、简介 二、安装Docker 1. 访问Docker官网 2. 卸载旧版本Dokcer 3. 下载yum-utils(yum工具包集合) 4. 设置国内镜像仓库 5. 更新yum软件包索引 6. 安装Docker 7. 启动Docker 8. 卸载Docker 三、阿里云镜像加速 1. 访问阿里云官网 2. …

containerd-rootless安装

实验环境:centos7.7.1908 参考文档: containerd (nerdctl) 依赖项 |无根容器 (rootlesscontaine.rs) [CentOS 7] 无法安装 containerd-rootless-setuptool.sh ([ERROR] 需要 systemd (systemctl --user&…

可直接在Maya实时表情捕捉的面捕头盔,为3D模型表情制作提速!

面捕表情捕捉头盔可以用于捕捉真人的面部表情,从微小的皱纹到大的脸部肌肉运动,通过面捕头盔,都可以实时转化到虚拟角色上。 在元宇宙浪潮下,围绕虚拟人的应用场景和时长变得愈加多元,人们对虚拟人的精度不再仅限于简…

AI机器人对话直播软件系统 带完整的搭建教程

AI机器人对话直播软件系统是一种基于人工智能技术的实时语音交互系统,具有自然语言处理、语音识别、语音合成等功能。该系统能够实现人与机器之间的智能对话,为企业提供更高效、更便捷的客户服务,同时还能为教育、娱乐等领域提供全新的互动体…

【Qt之QLocale】使用

描述 QLocale类可以在多种语言之间进行数字和字符串的转换。 QLocale类在构造函数中使用语言/国家对进行初始化,并提供类似于QString中的数字转字符串和字符串转数字的转换函数。 示例: QLocale egyptian(QLocale::Arabic, QLocale::Egypt);QString s1 …

淘宝价格监控-电商数据采集分析

一、什么是淘宝商品数据采集? 淘宝商品数据采集,顾名思义,就是通过技术手段对全网电商平台上的商品价格信息进行抓取并保存。通过将收集到的这些价格信息进行分析处理后得到该商品的成交价、折扣率等关键属性指标,从而为卖家提供…

从零开始的目标检测和关键点检测(一):用labelme标注数据集

从零开始的目标检测和关键点检测(一):用labelme标注数据集 1、可视化标注结果2、划分数据集3、Lableme2COCO,将json文件转换为MS COCO格式 前言:前段时间用到了mmlab的mmdetction和mmpose,因此以一个小的数…

Thread

Thread 线程启动线程第一种创建线程线程的第二种创建方式使用匿名内部类完成线程的两种创建 Thread API线程的优先级线程提供的静态方法守护线程用户线程和守护线程的区别体现在进程结束时 多线并发安全问题同步块 线程 启动线程 启动线程:调用线程的start方法,而不是直接调用…

用LibreOffice在excel中画折线图

数据表格如下。假设想以x列为横坐标,y1和y2列分别为纵坐标画折线图。 选择插入-》图表: 选择折线图-》点和线,然后点击“下一步”: 选择:列中包含数据序列,然后点击完成(因为图挡住了数据…

MySQL系列-架构体系、日志、事务

MySQL架构 server 层 :层包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现&am…

Qt 项目实战 | 俄罗斯方块

Qt 项目实战 | 俄罗斯方块 Qt 项目实战 | 俄罗斯方块游戏架构实现游戏逻辑游戏流程实现基本游戏功能设计小方块设计方块组添加游戏场景添加主函数 测试踩坑点1:rotate 失效踩坑点2:items 方法报错踩坑点3:setCodecForTr 失效踩坑点4&#xff…

蓝桥杯刷题

欢迎来到Cefler的博客😁 🕌博客主页:那个传说中的man的主页 🏠个人专栏:题目解析 🌎推荐文章:题目大解析(3) 👉🏻最大降雨量 原题链接&#xff1…

OpenCV官方教程中文版 —— 分水岭算法图像分割

OpenCV官方教程中文版 —— 分水岭算法图像分割 前言一、原理二、示例三、完整代码 前言 本节我们将要学习 • 使用分水岭算法基于掩模的图像分割 • 函数:cv2.watershed() 一、原理 任何一副灰度图像都可以被看成拓扑平面,灰度值高的区域可以被看成…

Hand Avatar: Free-Pose Hand Animation and Rendering from Monocular Video

Github: https://seanchenxy.github.io/HandAvatarWeb 1、结构摘要 MANO-HD模型:作为高分辨率网络拓扑来拟合个性化手部形状将手部几何结构分解为每个骨骼的刚性部分,再重新组合成对的几何编码,得到一个跨部分的一致占用场纹理建…

2.数据结构-链表

概述 目标 链表的存储结构和特点链表的几种分类及各自的存储结构链表和数组的差异刷题(反转链表) 概念及存储结构 先来看一下动态数组 ArrayList 存在哪些弊端 插入,删除时间复杂度高需要一块连续的存储空间,对内存要求比较高,比如要申请…

CentOS 安装 Hadoop Local (Standalone) Mode 单机模式

CentOS 安装 Hadoop Local (Standalone) Mode 单机模式 Hadoop Local (Standalone) Mode 单机模式 1. 修改yum源 并升级内核和软件 curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repoyum clean allyum makecacheyum -y update2. 安…