OpenCV官方教程中文版 —— 分水岭算法图像分割

OpenCV官方教程中文版 —— 分水岭算法图像分割

  • 前言
  • 一、原理
  • 二、示例
  • 三、完整代码

前言

本节我们将要学习

使用分水岭算法基于掩模的图像分割

函数:cv2.watershed()

一、原理

任何一副灰度图像都可以被看成拓扑平面,灰度值高的区域可以被看成是山峰,灰度值低的区域可以被看成是山谷。我们向每一个山谷中灌不同颜色的水。随着水的位的升高,不同山谷的水就会相遇汇合,为了防止不同山谷的水汇合,我们需要在水汇合的地方构建起堤坝。不停的灌水,不停的构建堤坝知道所有的山峰都被水淹没。我们构建好的堤坝就是对图像的分割。这就是分水
岭算法的背后哲理。

但是这种方法通常都会得到过度分割的结果,这是由噪声或者图像中其他不规律的因素造成的。为了减少这种影响,OpenCV 采用了基于掩模的分水岭算法,在这种算法中我们要设置那些山谷点会汇合,那些不会。这是一种交互式的图像分割。我们要做的就是给我们已知的对象打上不同的标签。如果某个区域肯定是前景或对象,就使用某个颜色(或灰度值)标签标记它。如果某个
区域肯定不是对象而是背景就使用另外一个颜色标签标记。而剩下的不能确定是前景还是背景的区域就用 0 标记。这就是我们的标签。然后实施分水岭算法。每一次灌水,我们的标签就会被更新,当两个不同颜色的标签相遇时就构建堤坝,直到将所有山峰淹没,最后我们得到的边界对象(堤坝)的值为 -1。

二、示例

下面的例子中我们将就和距离变换和分水岭算法对紧挨在一起的对象进行分割。如下图所示,这些硬币紧挨在一起。就算你使用阈值操作,它们任然是紧挨着的。
在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('water_coins.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
print("阈值为:", ret)
plt.figure()
plt.subplot(121), plt.imshow(gray, cmap='gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(thresh, cmap='gray')
plt.title('Binary Image'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

现在我们要去除图像中的所有的白噪声。这就需要使用形态学中的开运算。为了去除对象上小的空洞我们需要使用形态学闭运算。所以我们现在知道靠近对象中心的区域肯定是前景,而远离对象中心的区域肯定是背景。而不能确定的区域就是硬币之间的边界。

所以我们要提取肯定是硬币的区域。腐蚀操作可以去除边缘像素。剩下就可以肯定是硬币了。当硬币之间没有接触时,这种操作是有效的。但是由于硬币之间是相互接触的,我们就有了另外一个更好的选择:距离变换再加上合适的阈值。接下来我们要找到肯定不是硬币的区域。这是就需要进行膨胀操作了。膨胀可以将对象的边界延伸到背景中去。这样由于边界区域被去处理,我们就可以知道那些区域肯定是前景,那些肯定是背景。如下图所示。
在这里插入图片描述剩下的区域就是我们不知道该如何区分的了。这就是分水岭算法要做的。这些区域通常是前景与背景的交界处(或者两个前景的交界)。我们称之为边界。从肯定是不是背景的区域中减去肯定是前景的区域就得到了边界区域。

如结果所示,在阈值化之后的图像中,我们得到了肯定是硬币的区域,而且硬币之间也被分割开了。(有些情况下你可能只需要对前景进行分割,而不需要将紧挨在一起的对象分开,此时就没有必要使用距离变换了,腐蚀就足够了。当然腐蚀也可以用来提取肯定是前景的区域。)

现在知道了那些是背景那些是硬币了。那我们就可以创建标签(一个与原图像大小相同,数据类型为 int32 的数组),并标记其中的区域了。对我们已经确定分类的区域(无论是前景还是背景)使用不同的正整数标记,对我们不确定的区域使用 0 标记。我们可以使用函数 cv2.connectedComponents()
来做这件事。它会把将背景标记为 0,其他的对象使用从 1 开始的正整数标记。

但是,我们知道如果背景标记为 0,那分水岭算法就会把它当成未知区域了。所以我们想使用不同的整数标记它们。而对不确定的区域(函数cv2.connectedComponents 输出的结果中使用 unknown 定义未知区域)标记为 0。

# Marker labelling
ret, markers1 = cv2.connectedComponents(sure_fg)
# Add one to all labels so that sure background is not 0, but 1
markers = markers1+1
# Now, mark the region of unknown with zero
markers[unknown==255] = 0

结果使用 JET 颜色地图表示。深蓝色区域为未知区域。肯定是硬币的区域使用不同的颜色标记。其余区域就是用浅蓝色标记的背景了。

现在标签准备好了。到最后一步:实施分水岭算法了。标签图像将会被修改,边界区域的标记将变为 -1.

markers3 = cv2.watershed(img,markers)
img[markers3 == -1] = [255,0,0]

结果如下。有些硬币的边界被分割的很好,也有一些硬币之间的边界分割的不好。
在这里插入图片描述

三、完整代码

# -*- coding: utf-8 -*-
import cv2
from matplotlib import pyplot as plt
import numpy as np
img = cv2.imread('water_coins.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(
    gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)

plt.figure()
plt.subplot(121), plt.imshow(gray, cmap='gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(thresh, cmap='gray')
plt.title('Binary Image'), plt.xticks([]), plt.yticks([])

# noise removal
kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
# sure background area
sure_bg = cv2.dilate(opening, kernel, iterations=5)
plt.figure()
plt.subplot(121), plt.imshow(opening, cmap='gray')
plt.title('opening Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(sure_bg, cmap='gray')
plt.title('sure_bg Image'), plt.xticks([]), plt.yticks([])
# Finding sure foreground area
# 距离变换的基本含义是计算一个图像中非零像素点到最近的零像素点的距离,也就是到零像素点的最短距离
# 个最常见的距离变换算法就是通过连续的腐蚀操作来实现,腐蚀操作的停止条件是所有前景像素都被完全
# 腐蚀。这样根据腐蚀的先后顺序,我们就得到各个前景像素点到前景中心呗Ⅵ像素点的
# 距离。根据各个像素点的距离值,设置为不同的灰度值。这样就完成了二值图像的距离变换
# cv2.distanceTransform(src, distanceType, maskSize)
# 第二个参数 0,1,2 分别表示 CV_DIST_L1, CV_DIST_L2 , CV_DIST_C
dist_transform = cv2.distanceTransform(opening, 1, 5)
ret, sure_fg = cv2.threshold(dist_transform, 0.6 * dist_transform.max(), 255, 0)
# Finding unknown region
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg, sure_fg)

plt.figure()
plt.subplot(121), plt.imshow(dist_transform, cmap='gray')
plt.title('dist_transform Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(sure_fg, cmap='gray')
plt.title('threshold Image'), plt.xticks([]), plt.yticks([])

# Marker labelling
ret, markers1 = cv2.connectedComponents(sure_fg)
# Add one to all labels so that sure background is not 0, but 1
markers = markers1+1
# Now, mark the region of unknown with zero
markers[unknown==255] = 0
markers3 = cv2.watershed(img,markers)
img[markers3 == -1] = [0,0,255]

b,g,r = cv2.split(img)
img2 = cv2.merge([r,g,b])

plt.figure()
plt.subplot(121), plt.imshow(markers3)
plt.title('marker Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img2)
plt.title('result'), plt.xticks([]), plt.yticks([])
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/111412.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Hand Avatar: Free-Pose Hand Animation and Rendering from Monocular Video

Github: https://seanchenxy.github.io/HandAvatarWeb 1、结构摘要 MANO-HD模型:作为高分辨率网络拓扑来拟合个性化手部形状将手部几何结构分解为每个骨骼的刚性部分,再重新组合成对的几何编码,得到一个跨部分的一致占用场纹理建…

2.数据结构-链表

概述 目标 链表的存储结构和特点链表的几种分类及各自的存储结构链表和数组的差异刷题(反转链表) 概念及存储结构 先来看一下动态数组 ArrayList 存在哪些弊端 插入,删除时间复杂度高需要一块连续的存储空间,对内存要求比较高,比如要申请…

CentOS 安装 Hadoop Local (Standalone) Mode 单机模式

CentOS 安装 Hadoop Local (Standalone) Mode 单机模式 Hadoop Local (Standalone) Mode 单机模式 1. 修改yum源 并升级内核和软件 curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repoyum clean allyum makecacheyum -y update2. 安…

如何让salesforce提交待审批后不锁定记录

在 Salesforce 中,默认情况下,当记录被提交待审批时,它会被锁定以防止其他用户对其进行修改。这是为了确保审批过程中数据的完整性和一致性。然而,有时可能希望提交待审批后不锁定记录,这时可以使用Apex代码来实现: Ap…

idea自动编译以及修改代码后需要执行 mvn clean install 才生效

idea自动编译以及修改代码后需要执行 mvn clean install 才生效 一. idea热部署一、开启IDEA的自动编译(静态)二、开启IDEA的自动编译(动态)三、开启IDEA的热部署策略(非常重要) 二. IDEA 中项目代码修改后…

Vue 插槽 组件插入不固定内容

定义好一个组件&#xff0c;如果想插入图片或视频这非常不好的控制应该显示什么&#xff0c;这个时候可以使用插槽插入自定义内容 默认插槽 <Login><template><h1>我是插入的内容</h1></template></Login >组件 <slot></slot>…

一文了解Elasticsearch

数据分类 数据按数据结构分类主要有三种&#xff1a;结构化数据、半结构化数据和非结构化数据。 结构化数据 结构化数据具有明确定义数据模型和格式的数据类型。 特点&#xff1a; 数据具有固定的结构和模式。 数据项明确定义数据类型和长度。 适合用于数据查询、过滤和分…

ZOC8 for Mac:超越期待的终端仿真器

在Mac上&#xff0c;一个优秀的终端仿真器是每位开发者和系统管理员的必备工具。ZOC8&#xff0c;作为一款广受好评的终端仿真器&#xff0c;以其强大的功能和易用性&#xff0c;已经在Mac用户中积累了良好的口碑。本文将为您详细介绍ZOC8的各项特性&#xff0c;以及为什么它会…

MSQL系列(十二) Mysql实战-为什么索引要建立在被驱动表上

Mysql实战-为什么索引要建立在被驱动表上 前面我们讲解了BTree的索引结构&#xff0c;也详细讲解下 left Join的底层驱动表 选择原理&#xff0c;那么今天我们来看看到底如何用以及如何建立索引和索引优化 开始之前我们先提一个问题&#xff0c; 为什么索引要建立在被驱动表上…

【NI-DAQmx入门】传感器基础知识

1.什么是传感器&#xff1f; 传感器可将真实的现象&#xff08;例如温度或压力&#xff09;转换为可测量的电流和电压&#xff0c;因而对于数据采集应用必不可少。接下来我们将介绍您所需的测量类型及其对应的传感器类型。在开始之前&#xff0c;您还可以先了解一些传感器术语&…

uniapp 开发微信小程序 v-bind给子组件传递函数,该函数中的this不是父组件的二是子组件的this

解决办法&#xff1a;子组件通过缓存子组件this然后&#xff0c;用bind改写this 这个方法因为定义了全局变量that 那么该变量就只能用一次&#xff0c;不然会有赋值覆盖的情况。 要么就弃用v-bind传入函数,改为emit传入自定义事件 [uniapp] uview(1.x) 二次封装u-navbar 导致…

[MySQL]——SQL预编译、动态sql

键盘敲烂&#xff0c;年薪30万&#x1f308; 目录 一、SQL的预编译 &#x1f4d5;一条SQL语句的执行过程 &#x1f4d5;弊端 &#x1f4d5;预编译SQL的优势 &#x1f4d5;两种参数占位符 &#x1f4d5;小结 二、动态SQL &#x1f4d5;概念介绍&#xff1a; &#x1f4…

ROS自学笔记二十: Gazebo里面仿真环境搭建

Gazebo 中创建仿真实现方式有两种:1直接添加内置组件创建仿真环境2: 手动绘制仿真环境 1.添加内置组件创建仿真环境 1.1启动 Gazebo 并添加组件 1.2保存仿真环境 添加完毕后&#xff0c;选择 file ---> Save World as 选择保存路径(功能包下: worlds 目录)&#xff0c;文…

Docker:命令

Docker&#xff1a;命令 1. 创建MySQL的命令解读2. 基础命令3. 案例 查看DockerHub&#xff0c;拉取Nginx镜像&#xff0c;创建并运行Nginx容器4. 命令别名附录 1. 创建MySQL的命令解读 docker run :创建并运行一个容器&#xff0c;-d 是让容器在后台运行--name:给容器起一个名…

Java日志组件介绍之一

一、前言 前段时间爆出Log4j安全漏洞的事情&#xff0c;XX云因未及时报告漏洞被工信部暂停网络安全威胁和漏洞信息共享平台合作单位&#xff08;https://www.cstis.cn/&#xff09;&#xff0c;话说Java的日志组件真是多而且也比较乱&#xff0c;后续几篇文章就聊一下各日志组…

【嵌入式】【GIT】如何迁移老的GIF到新的仓库时使用LFS功能并保持LOG不变

一、正常迁移流程 假设有仓库 ssh://old/buildroot-201902 需要迁移到新的仓库 ssh://old/buildroot-201902时,我们可以使用以下命令来完成: # 下载老的仓库 git clone ssh://old/buildroot-201902 # 向新的仓库上传所有的tags git push ssh://new/buildroot-201902 --tag…

【Linux】:Linux开发工具之Linux编辑器vim的使用

&#x1f52b;1.Linux编辑器-vim使用 &#x1f4e4; vi/vim的区别简单点来说&#xff0c;它们都是多模式编辑器&#xff0c;不同的是vim是vi的升级版本&#xff0c;它不仅兼容vi的所有指令&#xff0c;而且还有一些新的特性在里面。例如语法加亮&#xff0c;可视化操作不仅可以…

【ARMv8 SIMD和浮点指令编程】NEON 存储指令——如何将数据从寄存器存储到内存?

和加载指令一样,NEON 有一系列的存储指令。比如 ST1、ST2、ST3、ST4。 1 ST1 (multiple structures) 从一个、两个、三个或四个寄存器存储多个单元素结构。该指令将元素从一个、两个、三个或四个 SIMD&FP 寄存器存储到内存,无需交错。每个寄存器的每个元素都被存储。 …

Ansible自动化运维工具介绍与部属

Ansible自动化运维工具介绍与部属 一、ansible简介1.1、什么是Ansible1.2、Ansible的特点1.3、Ansible的架构 二、Ansible任务执行解析2.1、ansible任务执行模式2.2、ansible执行流程2.3、ansible命令执行过程 三、部署ansible管理集群3.1、实验环境3.2、安装ansible3.3、查看基…

MySQL数据库的存储引擎,底层存储结构,事物隔离级别,索引,日志等

存储引擎 存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式。存储引擎是基于表而不是基于库的&#xff0c;所以存储引擎也可以被称为表引擎。 默认存储引擎是InnoDB。 InnoDB 在 MySQL 5.5 之后&#xff0c;InnoDB 是默认的 MySQL 引擎。 1.支持事务 2.行级锁…