40 深度学习(四):卷积神经网络|深度可分离卷积|colab和kaggle的基础使用

文章目录

  • 卷积神经网络
    • 为什么要卷积
    • 卷积的具体流程
    • 池化
    • tensorflow代码
  • 深度可分离卷积
    • 原理介绍
    • 计算量对比
    • 代码
    • 参数计算例子
  • colab 和 kaggle
    • colab
    • kaggle
    • 如何在colab上使用kaggle的数据

卷积神经网络

卷积神经网络的基本结构 1:
(卷积层+(可选)池化层) * N+全连接层 * M(N>=1,M>=0)
卷积层的输入和输出都是矩阵,全连接层的输入和输出都是向量,在最后一层的卷积上,把它做一个展平,这样就可以和全连接层进行运算了,为什么卷积要放到前面,因为展平丧失了维度信息,因此全连接层后面不能再放卷积层。

卷积神经网络的基本结构 2:
(卷积层+(可选)池化层)N+反卷积层K
反卷积层用来放大,可以让输出和输入一样大,当输出和输入一样大时,适用场景是物体分割(因为我们就是要确定这个点属于哪一个物体)。

为什么要卷积

一般从两个角度进行回答这个问题:

  1. 参数过多内存装不下,比如说:图像大小 10001000 一层神经元数目为 10^6
    ,而如果采用全连接的话,全连接参数为 1000
    1000*10^ 6=10^12, 一层就是 1 万亿个参数,内存是装不下这么多参数的。
  2. 参数过多容易过拟合,计算资源不足与容易过拟合,发生过拟合,我们就需要更多训练数据,但是很多时候我们没有更多的数据,因为获取数据需要成本。

而卷积通过使用参数共享的方法进行解决这种相关的问题。

主要的理论支持:

  1. 局部连接:图像的区域性—爱因斯坦的嘴唇附近的色彩等是相似的
  2. 参数共享与平移不变性:图像特征与位置无关—左边是脸,右边也是脸,这样无论脸放在什么地方都检查出来,刚好可以解决过拟合的问题(否则脸放到其他地方就检测不出来)

可参考链接

卷积的具体流程

这边由于在之前的博客也已经介绍过了,这边就不再介绍,但是会进行相关的参数介绍,到后面的代码当中需要我们去计算相关的层数 以及 相关的shape和参数的数目,到时候会体会的更深。

参数计算流程:链接

这边搬运一下计算公式:
在这里插入图片描述
这个只是长宽,这边给出计算例子,如果有不太清楚的人,到时候可以可移步到代码部分进行学习:

格式:(B,H,W,C)

输入:(B,H,W,C)
kennel-size(3,3) stride=(1,1) padding=0 filter=32
输出:(B,((H-3+0)//1)+1,((W-3+0)//1)+1,filter) 
参数的数目:kennel-size*通道*filter(个数)+ 偏置 = 3*3*C*32 + 32 

卷积和池化的流程:链接

池化

卷积和池化的流程:链接

池化: 池化函数使用某一位置的相邻输出的总体统计特征来代替网络在该位置的输出。本质是降采样,可以大幅减少网络的参数量。
池化技术的本质:在尽可能保留图片空间信息的前提下,降低图片的尺寸,增大卷积核感受视野,提取高层特征,同时减少网络参数量,预防过拟合。简单来说:等比例缩小图片,图片的主体内容丢失不多,依然具有平移,旋转,尺度的不变性,简单来说就是图片的主体内容依旧保存着原来大部分的空间信息。

一般池化也分为几种:
最大值池化:能够抑制网络参数误差造成的估计均值偏移的现象。
平均值池化:主要用来抑制邻域值之间差别过大,造成的方差过大。

特点

  1. 常使用不重叠、不补零
  2. 没有用于求导的参数
  3. 池化层参数为步长和池化核大小
  4. 用于减少图像尺寸,从而减少计算量
  5. 一定程度平移鲁棒,比如一只猫移动了一个像素的另外一张图片,我们先做池化,再做卷积,那么最终还是可以识别这个猫。
  6. 损失了空间位置精度

tensorflow代码

import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
from sklearn.preprocessing import StandardScaler
import os

# 数据准备
# -----------------------------------------------------------------------------
fashion_mnist = keras.datasets.fashion_mnist
(x_train_all, y_train_all), (x_test, y_test) = fashion_mnist.load_data()
x_valid, x_train = x_train_all[:5000], x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]
print(x_valid.shape, y_valid.shape)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
scaler = StandardScaler()
# 注意这边和之前的不一样,这边最后面的reshape变成了28,28,1,相比于之前多了个1,符合基础的形状(B,H,W,C)
x_train_scaled = scaler.fit_transform(x_train.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28, 1)
x_valid_scaled = scaler.transform(x_valid.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28, 1)
x_test_scaled = scaler.transform(x_test.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28, 1)
# -----------------------------------------------------------------------------

# 模型准备
# -----------------------------------------------------------------------------
model = keras.models.Sequential()
#添加卷积层,filters输出有多少通道,就是有多少卷积核,kernel_size卷积核的大小,
# padding是否加上padding,same代表输出和输入大小一样,1代表通道数目是1
model.add(keras.layers.Conv2D(filters=32, kernel_size=3, padding='same', activation='selu', input_shape=(28, 28, 1)))
model.add(keras.layers.Conv2D(filters=32, kernel_size=3, padding='same', activation='selu'))
#添加池化层,pool_size是窗口大小,步长默认和窗口大小相等
model.add(keras.layers.MaxPool2D(pool_size=2))
#为了缓解损失,所以filters翻倍
model.add(keras.layers.Conv2D(filters=64, kernel_size=3, padding='same', activation='selu'))
model.add(keras.layers.Conv2D(filters=64, kernel_size=3, padding='same', activation='selu'))
model.add(keras.layers.MaxPool2D(pool_size=2))
model.add(keras.layers.Conv2D(filters=128, kernel_size=3, padding='same', activation='selu'))
model.add(keras.layers.Conv2D(filters=128, kernel_size=3, padding='same', activation='selu'))
model.add(keras.layers.MaxPool2D(pool_size=2))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128, activation='selu'))
model.add(keras.layers.Dense(10, activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy", optimizer = "sgd", metrics = ["accuracy"])
model.summary()
# -----------------------------------------------------------------------------

输出:

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
下载过程略
(5000, 28, 28) (5000,)
(55000, 28, 28) (55000,)
(10000, 28, 28) (10000,)
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 conv2d (Conv2D)             (None, 28, 28, 32)        320       
                                                                 
 conv2d_1 (Conv2D)           (None, 28, 28, 32)        9248      
                                                                 
 max_pooling2d (MaxPooling2  (None, 14, 14, 32)        0         
 D)                                                              
                                                                 
 conv2d_2 (Conv2D)           (None, 14, 14, 64)        18496     
                                                                 
 conv2d_3 (Conv2D)           (None, 14, 14, 64)        36928     
                                                                 
 max_pooling2d_1 (MaxPoolin  (None, 7, 7, 64)          0         
 g2D)                                                            
                                                                 
 conv2d_4 (Conv2D)           (None, 7, 7, 128)         73856     
                                                                 
 conv2d_5 (Conv2D)           (None, 7, 7, 128)         147584    
                                                                 
 max_pooling2d_2 (MaxPoolin  (None, 3, 3, 128)         0         
 g2D)                                                            
                                                                 
 flatten (Flatten)           (None, 1152)              0         
                                                                 
 dense (Dense)               (None, 128)               147584    
                                                                 
 dense_1 (Dense)             (None, 10)                1290      
                                                                 
=================================================================
Total params: 435306 (1.66 MB)
Trainable params: 435306 (1.66 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

需要值得关注的点就是上文所展示的参数的数目,以及相对应的每一层参数的大小,这边虽然不需要我们自己进行填写,但是也需要了解。

然后就是开始训练:

# 存储训练的参数
# -----------------------------------------------------------------------------
logdir = './cnn-selu-callbacks'
if not os.path.exists(logdir):
    os.mkdir(logdir)
output_model_file = os.path.join(logdir, "fashion_mnist_model.h5")

callbacks = [
    keras.callbacks.TensorBoard(logdir),
    keras.callbacks.ModelCheckpoint(output_model_file,save_best_only = True),
    keras.callbacks.EarlyStopping(patience=5, min_delta=1e-3),
]

history = model.fit(x_train_scaled, y_train, epochs=10, validation_data=(x_valid_scaled, y_valid), callbacks = callbacks)
# -----------------------------------------------------------------------------

# 绘图
# -----------------------------------------------------------------------------
def plot_learning_curves(history):
    pd.DataFrame(history.history).plot(figsize=(8, 5))
    plt.grid(True)
    plt.gca().set_ylim(0, 1)
    plt.show()

plot_learning_curves(history)
# -----------------------------------------------------------------------------

# 评估模型
model.evaluate(x_test_scaled, y_test, verbose = 0)

输出:

Epoch 1/10
1719/1719 [==============================] - 23s 7ms/step - loss: 0.4335 - accuracy: 0.8442 - val_loss: 0.3615 - val_accuracy: 0.8728
······
Epoch 10/10
1719/1719 [==============================] - 11s 6ms/step - loss: 0.0748 - accuracy: 0.9746 - val_loss: 0.2589 - val_accuracy: 0.9190
图片见下
[0.2659706473350525, 0.9179999828338623]

在这里插入图片描述
selu相比于relu来说,他的效果更好,但是对于gpu不适合计算ex的函数,所以他的计算来说就会很慢。

深度可分离卷积

深度可分离卷积是对于卷积的再一次升级,你可以看到其的所需要的参数量更加的小了,这个体会可以放到后面的代码环节进行体会。

原理介绍

整个流程的过程,先按照图片进行介绍,一共是分为两步:

第一步:考虑的是图片本身的属性,他把图片按照通道进行分开,一层通道用一个kennel-size,然后使用kennel-size对一层一层进行卷积,得到同等通道的图,然后进行下一步。
在这里插入图片描述
第二步考虑的是通道的属性,将上一步的输出考虑上通道的属性,按照1 * 1 * C的kennel-size进行卷积,并且搭配上多个filter进行后面的升维计算。
在这里插入图片描述
最后得到升维后的特征图片。

计算量对比

首先参数对比一般会先忽略掉偏置项b,因为相比之下偏置项b的量级太小:

对于普通的卷积来说,他的计算量需求:(kennel-size * kennel-size * H的滑动次数 * W的滑动次数 * C * filter)

而对于深度可分离卷积来说,他的计算量由两部分组成:
第一部分深度可分离:(kennel-size * kennel-size * H的滑动次数 * W的滑动次数 * C)

第二部分1 * 1 卷积:(1 * 1 * filter * H的滑动次数 * W的滑动次数)

两部分相加之后计算量会小于卷积,原因就是正常情况下我们的filter取的值是越来越大,甚至十分大的,所以这种的效果会更加好。

而相同的进行参数量对比,相信学习过上面的原理,大家也可以轻易写出相关的比较式子,这边留给大家。

参数量计算后面也会给出计算例子

代码

import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
from sklearn.preprocessing import StandardScaler
import os

# 数据准备
# -----------------------------------------------------------------------------
fashion_mnist = keras.datasets.fashion_mnist
(x_train_all, y_train_all), (x_test, y_test) = fashion_mnist.load_data()
x_valid, x_train = x_train_all[:5000], x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]
print(x_valid.shape, y_valid.shape)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
scaler = StandardScaler()
# 注意这边和之前的不一样,这边最后面的reshape变成了28,28,1,相比于之前多了个1,符合基础的形状(B,H,W,C)
x_train_scaled = scaler.fit_transform(x_train.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28, 1)
x_valid_scaled = scaler.transform(x_valid.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28, 1)
x_test_scaled = scaler.transform(x_test.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28, 1)
# -----------------------------------------------------------------------------

# 模型准备
# -----------------------------------------------------------------------------
model = keras.models.Sequential()
model.add(keras.layers.Conv2D(filters=32, kernel_size=3, padding='same', activation='selu', input_shape=(28, 28, 1)))
#这里就是深度可分离卷积
model.add(keras.layers.SeparableConv2D(filters=32, kernel_size=3, padding='same', activation='selu'))
model.add(keras.layers.MaxPool2D(pool_size=2))
model.add(keras.layers.SeparableConv2D(filters=64, kernel_size=3, padding='same', activation='selu'))
model.add(keras.layers.SeparableConv2D(filters=64, kernel_size=3, padding='same', activation='selu'))
model.add(keras.layers.MaxPool2D(pool_size=2))
model.add(keras.layers.SeparableConv2D(filters=128, kernel_size=3, padding='same', activation='selu'))
model.add(keras.layers.SeparableConv2D(filters=128, kernel_size=3, padding='same', activation='selu'))
model.add(keras.layers.MaxPool2D(pool_size=2))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128, activation='selu'))
model.add(keras.layers.Dense(10, activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy", optimizer = "sgd", metrics = ["accuracy"])
model.summary()
# -----------------------------------------------------------------------------

输出:

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
下载过程略
(5000, 28, 28) (5000,)
(55000, 28, 28) (55000,)
(10000, 28, 28) (10000,)
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 conv2d (Conv2D)             (None, 28, 28, 32)        320       
                                                                 
 separable_conv2d (Separabl  (None, 28, 28, 32)        1344      
 eConv2D)                                                        
                                                                 
 max_pooling2d (MaxPooling2  (None, 14, 14, 32)        0         
 D)                                                              
                                                                 
 separable_conv2d_1 (Separa  (None, 14, 14, 64)        2400      
 bleConv2D)                                                      
                                                                 
 separable_conv2d_2 (Separa  (None, 14, 14, 64)        4736      
 bleConv2D)                                                      
                                                                 
 max_pooling2d_1 (MaxPoolin  (None, 7, 7, 64)          0         
 g2D)                                                            
                                                                 
 separable_conv2d_3 (Separa  (None, 7, 7, 128)         8896      
 bleConv2D)                                                      
                                                                 
 separable_conv2d_4 (Separa  (None, 7, 7, 128)         17664     
 bleConv2D)                                                      
                                                                 
 max_pooling2d_2 (MaxPoolin  (None, 3, 3, 128)         0         
 g2D)                                                            
                                                                 
 flatten (Flatten)           (None, 1152)              0         
                                                                 
 dense (Dense)               (None, 128)               147584    
                                                                 
 dense_1 (Dense)             (None, 10)                1290      
                                                                 
=================================================================
Total params: 184234 (719.66 KB)
Trainable params: 184234 (719.66 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

然后就是开始训练模型

# 存储训练的参数 和 训练模型
# -----------------------------------------------------------------------------
logdir = './separable-cnn-selu-callbacks'
if not os.path.exists(logdir):
    os.mkdir(logdir)
output_model_file = os.path.join(logdir,"fashion_mnist_model.h5")

callbacks = [
    keras.callbacks.TensorBoard(logdir),
    keras.callbacks.ModelCheckpoint(output_model_file,save_best_only = True),
    keras.callbacks.EarlyStopping(patience=5, min_delta=1e-3),
]
history = model.fit(x_train_scaled, y_train, epochs=10, validation_data=(x_valid_scaled, y_valid), callbacks = callbacks)
# -----------------------------------------------------------------------------

# 绘图
# -----------------------------------------------------------------------------
def plot_learning_curves(history):
    pd.DataFrame(history.history).plot(figsize=(8, 5))
    plt.grid(True)
    plt.gca().set_ylim(0, 3)
    plt.show()

plot_learning_curves(history)
# -----------------------------------------------------------------------------

# 评估模型
# -----------------------------------------------------------------------------
model.evaluate(x_test_scaled, y_test, verbose = 0)
# -----------------------------------------------------------------------------

输出:

Epoch 1/10
1719/1719 [==============================] - 24s 7ms/step - loss: 2.2999 - accuracy: 0.1143 - val_loss: 2.2792 - val_accuracy: 0.0980
······
Epoch 10/10
1719/1719 [==============================] - 11s 6ms/step - loss: 0.4067 - accuracy: 0.8514 - val_loss: 0.3963 - val_accuracy: 0.8584
图片见下
[0.4277254343032837, 0.8440999984741211]

图片:
在这里插入图片描述

参数计算例子

在这里插入图片描述
在这里插入图片描述

大小计算:

首先对于input(None282832)来说,经历SeparableConv2D(filters=32, kernel_size=3, padding='same', activation='selu')后得到的大小:
很简单可以理解:(None,28,28,32)第一个None取决于Batch-size,所以是None,第二个28,因为有个same,他自然加上padding,自然就还是28,第三个28同理,第四个32取决于上一个filters,最后自然得到了(None,28,28,32),这还是很简单的。

参数数量计算:

第一步深度可分离:
参数数量=kennel-size*kennel-size*C
所以自然就是 3*3*32=288

第二步1*1卷积:
参数数量=1*1*C*filter + b
所以自然就是 32*32+32 = 1056

最后两个相加 = 1344

后面可以自行计算一下子。

colab 和 kaggle

colab

首先关于colab的使用实际上和juptyer的使用十分相似,然后打开GPU的地方:
在这里插入图片描述
在这里插入图片描述
然后自然就有了。

下载文件呢?
在这里插入图片描述
然后工作目录是在content文件夹当中

kaggle

使用gpu的地方
在这里插入图片描述

工作目录是再working当中,然后你导入了数据集后,数据集是放在…/input当中

如何在colab上使用kaggle的数据

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这个需要记住

然后在colab当中的代码:
先挂载

from google.colab import drive
drive.mount('/content/gdrive/')

然后根据提示上传kaggle.json

from google.colab import files
files.upload()

第三步就是设置对应的kaggle.json

!pip install -q kaggle
!mkdir -p /content/drive/Kaggle/
!cp kaggle.json /content/drive/Kaggle/
!chmod 600 /content/drive/Kaggle/kaggle.json
!mkdir -p ~/.kaggle
!cp kaggle.json ~/.kaggle/
!chmod 600 ~/.kaggle/kaggle.json

检测是否成功:

!kaggle datasets list

然后比如说我们要下载这个数据集:
在这里插入图片描述

!kaggle datasets download -d slothkong/10-monkey-species

解压:

!unzip -o -d /content /content/10-monkey-species.zip

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/111114.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

标题:轻松转换GIF到JPG,批量处理图片,优化你的图片管理!

作为一位设计师或社交媒体工作者,您可能经常需要处理大量的动图或GIF文件。这些GIF文件可能需要进行格式转换,以便更好地满足您的需求。现在,我们向您介绍一款轻松转换GIF到JPG的工具,帮助您更高效地管理您的图片库! …

内存DMA及设备内存控制详解

序言 对于PCIe 设备(PCIe Endpoint)来说,其和CPU CORE、DRAM 的交互,主要涉及两种类型的内存访问: 设备内存访问:PCIe 设备的 Device Memory(设备内存)的访问,例如CPU …

【Apache Flink】基于时间和窗口的算子-配置时间特性

文章目录 前言配置时间特性将时间特性设置为事件时间时间戳分配器周期性水位线分配器创建一个实现AssignerWithPeriodicWatermarks接口的类,目的是为了周期性生成watermark 定点水位线分配器示例 参考文档 前言 Apache Flink 它提供了多种类型的时间和窗口概念&…

JDK项目分析的经验分享

基本类型的包装类(Character放在最后) String、StringBuffer、StringBuilder、StringJoiner、StringTokenizer(补充正则表达式的知识) CharacterIterator、StringCharacterIterator、CharsetProvider、CharsetEncoder、CharsetDecoder(较难) java.util.function下的函数表…

​测绘人注意,你可能会改变历史!

你也许想不到,曾经有一个测绘人员在进行实地测量作业时,在地图上就这么随手一标注,却让这个地方成为了如今的网红打卡地。 这个地方就是外地游客慕名而来的“宽窄巷子”,如果连这个地方都不知道的成都人,就应该不能算…

python的pytorch和torchvision利用wheel文件安装

python的pytorch和torchvision利用wheel文件安装 在做人工智能的时候,我们需要下载pytorch和torchvision,那么如何下载呢。利用wheel文件pip安装 下载 首先要看你的python版本,打开命令行,输入: python -V就可以看…

华为云资源搭建过程

网络搭建 EIP: 弹性EIP,支持IPv4和IPv6。 弹性公网IP(Elastic IP)提供独立的公网IP资源,包括公网IP地址与公网出口带宽服务。可以与弹性云服务器、裸金属服务器、虚拟IP、弹性负载均衡、NAT网关等资源灵活地绑定及解绑…

纯css实现手机端loading

纯css实现手机端loading <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><meta name"viewport" content"wid…

PHP连接SQLServer echo输出中文汉字显示乱码解决方法

1、查询结果有中文会显示乱码。 解决方法一&#xff08;较简单&#xff0c;建议使用&#xff09;&#xff1a; 在php文件最开头写上&#xff1a; header(Content-type: text/html; charsetUTF8); // UTF8不行改成GBK试试&#xff0c;与你保存的格式匹配 <?php header(&q…

Django实战项目-学习任务系统-任务管理

接着上期代码框架&#xff0c;开发第3个功能&#xff0c;任务管理&#xff0c;再增加一个学习任务表&#xff0c;用来记录发布的学习任务的标题和内容&#xff0c;预计完成天数&#xff0c;奖励积分和任务状态等信息。 第一步&#xff1a;编写第三个功能-任务管理 1&#xff0…

P3983 赛斯石(赛后强化版),背包

题目背景 白露横江&#xff0c;水光接天&#xff0c;纵一苇之所如&#xff0c;凌万顷之茫然。——苏轼真程海洋近来需要进购大批赛斯石&#xff0c;你或许会问&#xff0c;什么是赛斯石&#xff1f; 首先我们来了解一下赛斯&#xff0c;赛斯是一个重量单位&#xff0c;我们用…

Wi-Fi 6和5G 在应用场景上的区别

在工作领域&#xff0c;我们经常会面临两个选择&#xff0c;场景的解决方案是要用5G还是WiFi 6&#xff0c;其实判断并不困难&#xff0c;但我们仍然还是从理论概念上区分一下。 文章目录 什么是Wi-Fi 6什么是5GWi-Fi 6和5G 的区别区别一&#xff1a;覆盖范围区别二&#xff1…

腾讯云轻量服务器“镜像类型”以及“镜像”选择方法

腾讯云轻量应用服务器镜像类型分为应用镜像、系统镜像、Docker基础镜像、自定义镜像和共享镜像&#xff0c;腾讯云百科txybk.com来详细说下不同镜像类型说明和详细介绍&#xff1a; 轻量应用服务器镜像类型说明 腾讯云轻量应用服务器 应用镜像&#xff1a;独有的应用镜像除了包…

氮化镓功率HEMT的表征与建模

来源&#xff1a;Characterization and Modeling of a Gallium Nitride Power HEMT(IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS) GaN high-electron-mobility transistor (HEMT) GaN高电子迁移率晶体管   该模型包括一个电压相关电流源Ids、两个电压相关电容Cgd和Cds、一…

NLP之LSTM原理剖析

文章目录 背景simpleRNN的局限性 LSTM手写一下sigmoid例子支持长记忆的神经网络解读3重门 背景 SimpleRNN有一定局限性&#xff0c; 图片上的文字内容: 图片标题提到“SimpleRNN是一种基础模型。它用于解决序列型问题&#xff0c;其中的每一步的输出会影响到下一步的结果。图…

Yolo-Z:改进的YOLOv5用于小目标检测

目录 一、前言 二、背景 三、新思路 四、实验分析 论文地址&#xff1a;2112.11798.pdf (arxiv.org) 一、前言 随着自动驾驶汽车和自动驾驶赛车越来越受欢迎&#xff0c;对更快、更准确的检测器的需求也在增加。 虽然我们的肉眼几乎可以立即提取上下文信息&#xff0c;即…

JVM虚拟机:堆结构的逻辑分区

堆内存的逻辑分区 堆内存的逻辑分区如下所示: 堆内存中分为新生代和老年代,二者空间大小1:3。在新生代里面分为两类区域(eden、survivor),三个区域(eden、survivor、survivor),三个区大小比例为8:1:1。 对象存放的位置 栈 当我们new一个对象的时候,首先会将对象…

Wpf 使用 Prism 实战开发Day03

一.实现左侧菜单绑定 效果图: 1.首先需要在项目中创建 mvvm 的架构模式 创建 Models &#xff0c;放置实体类。 实体类需要继承自Prism 框架的 BindableBase&#xff0c;目的是让实体类支持数据的动态变更! 例如: 系统导航菜单实体类 / <summary>/// 系统导航菜单实体类…

vcomp140.dll丢失是什么意思,vcomp140.dll丢失这几个方法都能修复好

vcomp140.dll是什么&#xff1f; vcomp140.dll是一个动态链接库&#xff08;Dynamic Link Library&#xff09;&#xff0c;它主要用于支持Microsoft Visual C 2015编程语言的运行。这个文件包含了编译器相关的函数和资源&#xff0c;对于使用Visual C 2015开发的程序和游戏来…

mac vscode 使用 clangd

C 的智能提示 IntelliSense 非常不准&#xff0c;我们可以使用 clangd clangd 缺点就是配置繁琐&#xff0c;优点就是跳转和提示代码精准 开启 clangd 之后会提示你关闭 IntelliSense 1、安装插件 clangd 搜索第一个下载多的就是 2、配置 clangd 可执行程序路径 clangd 插…