Yolo-Z:改进的YOLOv5用于小目标检测

目录

一、前言

二、背景

三、新思路

四、实验分析


论文地址:2112.11798.pdf (arxiv.org)

一、前言

随着自动驾驶汽车和自动驾驶赛车越来越受欢迎,对更快、更准确的检测器的需求也在增加。

虽然我们的肉眼几乎可以立即提取上下文信息,即使是在很远的地方,但图像分辨率和计算资源的限制使得检测较小的对象(即在输入图像中占据小像素区域的对象)对机器来说是一项真正具有挑战性的任务和广阔的研究领域。

本研究探讨了如何修改流行的YOLOv5目标检测器以提高其在检测较小对象方面的性能,特别是在自主赛车中的应用。为了实现这一点,研究者研究了替换模型的某些结构元素(以及它们的连接和其他参数)如何影响性能和推理时间。为此,研究者提出了一系列不同尺度的模型,将其命名为“YOLO-Z”,当以50%的IoU检测较小的物体时,这些模型的mAP提升高达6.9%,而代价与原始YOLOv5相比,推理时间增加了 3ms。

研究者们的目标是为未来的研究提供有关调整流行检测器(例如YOLOv5)以解决特定任务的潜力的信息,并提供有关特定更改如何影响小物体检测的见解。这些发现应用于更广泛的自动驾驶汽车环境,可以增加此类系统可用的环境信息量。

二、背景

检测图像中的小物体具有挑战性,主要是由于模型可用的分辨率和上下文信息有限。许多实现目标检测的系统都以实时速度执行此操作,从而对计算资源提出了特定要求,尤其是在处理要在捕获图像的同一设备上进行时。许多自动驾驶车辆系统就是这种情况,其中车辆本身实时捕获和处理图像,通常是为了通知其下一步行动。在这种情况下,检测较小的物体意味着检测距离汽车较远的物体,从而可以更早地检测到这些物体,有效地扩大了车辆的检测范围。这一特定领域的改进将更好地为系统提供信息,使其能够做出更稳健和可行的决策。由于目标检测器的性质,较小对象的细节在其卷积主干的每一层处理时失去了意义。在本研究中,“小物体”是指在输入图像中占据小像素区域的物体。

目前,已经有很多研究者努力改进对较小物体的检测[如An Evaluation of Deep Learning Methods for Small Object Detection],但许多都围绕着图像的特定区域进行处理或集中在two-stages检测器周围,这些检测器以实现以推理时间为代价获得更好的性能,使其不太适合实时应用程序。这也是为此类应用开发了如此多的单级检测器的原因。增加输入图像分辨率是绕过此问题的另一种明显方法,但会导致处理时间显着增加。

三、新思路

已经投入了一些努力来开发将处理导向输入图像的某些区域的系统,这使我们能够调整分辨率,从而绕过定义对象的像素较少的限制。然而,这种方法更适合对时间不敏感的系统,因为它们需要多次通过不同规模的网络。这种更加关注特定尺度的想法仍然可以激发我们处理某些特征图的方式。此外,通过查看如何处理特征图而不是仅仅修改主干可以学到很多东西。不同类型的特征金字塔网络(FPN)可以不同地聚合特征图,以不同方式增强主干。这种技术被证明是相当有效的。

YOLOv5框架

YOLOv5为其模型提供了四种不同的尺度,S、M、L和X,分别代表Small、Medium、Large和Xlarge。这些比例中的每一个都将不同的乘数应用于模型的深度和宽度,这意味着模型的整体结构保持不变,但每个模型的大小和复杂性都会按比例缩放。

在实验中,我们在所有尺度上分别对模型结构进行更改,并将每个模型视为不同的模型,以评估其效果。为了设置基线,我们训练并测试了YOLOv5四个未修改版本。然后,分别测试了对这些网络的更改,以便根据我们的基线结果分别观察它们的影响。在进入下一阶段时,那些似乎对提高准确性或推理时间没有贡献的技术和结构被过滤掉了。然后,尝试了所选技术的组合。重复这个过程,观察某些技术是相互补充还是相互削弱,并逐渐增加更复杂的组合。

Proposed architectural changes

YOLOv5使用yaml文件来指示解析器如何构建模型。我们使用此设置编写自己的高级指令,说明如何构建模型的不同构建块以及使用哪些参数,从而修改其结构。为了实现新结构,我们安排并为每个构建块或层提供参数,并在必要时指示解析器如何构建它。用我们的话来说,我们利用了YOLOv5提供的基础和实验网络块,同时在需要的地方实现了额外的块来模拟所需的结构。

其中,neck的修改:

在这项工作中,将当前的Pan-Net[Path aggregation network for instance segmentation]简化为FPN,并将其替换为biFPN[EfficientDet: Scalable and Efficient Object Detection]。在这两种情况下,neck都保留了类似的功能,但复杂性有所不同,因此实现它们所需的层数和连接数也有所不同。

其他修改可见论文。

四、实验分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/111090.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JVM虚拟机:堆结构的逻辑分区

堆内存的逻辑分区 堆内存的逻辑分区如下所示: 堆内存中分为新生代和老年代,二者空间大小1:3。在新生代里面分为两类区域(eden、survivor),三个区域(eden、survivor、survivor),三个区大小比例为8:1:1。 对象存放的位置 栈 当我们new一个对象的时候,首先会将对象…

Wpf 使用 Prism 实战开发Day03

一.实现左侧菜单绑定 效果图: 1.首先需要在项目中创建 mvvm 的架构模式 创建 Models &#xff0c;放置实体类。 实体类需要继承自Prism 框架的 BindableBase&#xff0c;目的是让实体类支持数据的动态变更! 例如: 系统导航菜单实体类 / <summary>/// 系统导航菜单实体类…

vcomp140.dll丢失是什么意思,vcomp140.dll丢失这几个方法都能修复好

vcomp140.dll是什么&#xff1f; vcomp140.dll是一个动态链接库&#xff08;Dynamic Link Library&#xff09;&#xff0c;它主要用于支持Microsoft Visual C 2015编程语言的运行。这个文件包含了编译器相关的函数和资源&#xff0c;对于使用Visual C 2015开发的程序和游戏来…

mac vscode 使用 clangd

C 的智能提示 IntelliSense 非常不准&#xff0c;我们可以使用 clangd clangd 缺点就是配置繁琐&#xff0c;优点就是跳转和提示代码精准 开启 clangd 之后会提示你关闭 IntelliSense 1、安装插件 clangd 搜索第一个下载多的就是 2、配置 clangd 可执行程序路径 clangd 插…

【数据结构】数组和字符串(五):特殊矩阵的压缩存储:稀疏矩阵——压缩稀疏行(CSR)

文章目录 4.2.1 矩阵的数组表示4.2.2 特殊矩阵的压缩存储a. 对角矩阵的压缩存储b~c. 三角、对称矩阵的压缩存储d. 稀疏矩阵的压缩存储——三元组表e. 压缩稀疏行&#xff08;Compressed Sparse Row&#xff0c;CSR&#xff09;矩阵结构体创建CSR矩阵元素设置初始化打印矩阵销毁…

VPS是什么?详解亚马逊云科技Amazon Lightsail(VPS)虚拟专用服务器

2006年&#xff0c;南非开普敦&#xff0c;亚马逊推出了WBS&#xff0c;以网络服务的形式向企业提供基础的IT服务。亚马逊云科技的一小步&#xff0c;在无数技术更迭&#xff0c;天才设计师和程序员的努力与基础设施建设的完善之下成为了人类科技进展的一大步。 亚马逊云科技可…

目标检测概述

1.是什么&#xff1f; 目标检测是计算机视觉领域的核心问题之一&#xff0c;其任务就是找出图像中所有感兴趣的目标&#xff0c;确定他们的类别和位置。由于各类不同物体有不同的外观&#xff0c;姿态&#xff0c;以及不同程度的遮挡&#xff0c;加上成像是光照等因素的干扰&a…

三篇论文:速览GPT在网络安全最新论文中的应用案例

GPT在网络安全领域的应用案例 写在最前面论文1&#xff1a;Chatgpt/CodeX引入会话式 APR 范例利用验证反馈LLM 的长期上下文窗口&#xff1a;更智能的反馈机制、更有效的信息合并策略、更复杂的模型结构、鼓励生成多样性和GPT类似的步骤&#xff1a;Conversational APR 对话式A…

精品基于Python的个性化电影推荐系统

《[含文档PPT源码等]精品基于Python的个性化电影推荐系统设计与实现》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功&#xff01; 软件开发环境及开发工具&#xff1a; 开发语言&#xff1a;python 使用框架&#xff1a;Django 前端技…

C++设计模式_18_State 状态模式

State和Memento被归为“状态变化”模式。 文章目录 1. “状态变化”模式1.1 典型模式 2. 动机 (Motivation)3. 代码演示State 状态模式3.1 常规方式3.2 State 状态模式 4. 模式定义5. 结构( Structure )6. 要点总结7. 其他参考 1. “状态变化”模式 在组件构建过程中&#xf…

Linux网络编程二(TCP三次握手、四次挥手、TCP滑动窗口、MSS、TCP状态转换、多进程/多线程服务器实现)

TCP三次握手 TCP三次握手(TCP three-way handshake)是TCP协议建立可靠连接的过程&#xff0c;确保客户端和服务器之间可以进行可靠的通信。下面是TCP三次握手的详细过程&#xff1a; 假设客户端为A&#xff0c;服务器为B 1、第一次握手&#xff08;SYN1&#xff0c;seq500&…

深度学习_1 介绍;安装环境

深度学习 学习自李沐老师的课程。笔记主要以总结老师所讲解的内容以及我个人的想法为主&#xff0c;侵删&#xff01; 课程链接&#xff1a;课程安排 - 动手学深度学习课程 (d2l.ai) 介绍 AI地图&#xff1a; 我们以前写的非 AI 类程序基本都是人自己去想会遇到什么样的问题…

集成测试、单元测试、系统测试之间的关系和区别

前言 为了使软件正常工作&#xff0c;所有单元都应集成在一起并正常运行。集成测试就像是要求不同工种的工人修建一个房子&#xff0c;希望他们都团结协作。如何判断他们在一起是否可以按照计划完成建设呢&#xff1f;唯一了解的方法是通过将它们全部拉在一起并测试它们如何相互…

Redis入门01-简单了解

目录 Redis的发展历史 特性简介 数据类型 内存存储与持久化 功能丰富 简单稳定 应用场景 为啥用Redis Redis的发展历史 Redis&#xff08;Remote Dictionary Server&#xff09;是一个高性能的键值存储系统&#xff0c;通常用作缓存、消息队列和分布式数据存储的解决方…

数据统计--图形报表--ApacheEcharts技术 --苍穹外卖day10

Apache Echarts 营业额统计 重点:已完成订单金额要排除其他状态的金额 根据时间选择区间 设计vo用于后端向前端传输数据,dto用于后端接收前端发送的数据 GetMapping("/turnoverStatistics")ApiOperation("营业额统计")public Result<TurnoverReportVO…

更新电脑显卡驱动的操作方法有哪些?

更新显卡驱动可以有效的提升我们电脑的性能&#xff0c;可以通过设备管理器、显卡驱动软件等方式进行检查驱动是否需要更新&#xff0c;并修复一些电脑上已知的显卡问题。 然而&#xff0c;对于一些不是很懂电脑技术的人员来说&#xff0c;更新电脑显卡驱动是一件比较复杂和混乱…

Linux服务器部署带Cplex的Java项目

Linux版Cplex安装 Cplex安装包 Cplex 22.1.0 Linux安装包 安装步骤 找到安装包的路径 [roothecs-327697 ~]# cd /www/cplex [roothecs-327697 cplex]# ls cplex_studio2210.linux_x86_64.bin使用chmod 777赋予安装包读、写、执行权限&#xff0c;使用./执行安装 [roothec…

C/S架构和B/S架构

1. C/S架构和B/S架构简介 C/S 架构&#xff08;Client/Server Architecture&#xff09;和 B/S 架构&#xff08;Browser/Server Architecture&#xff09;是两种不同的软件架构模式&#xff0c;它们描述了客户端和服务器之间的关系以及数据交互的方式。 C/S 架构&#xff08…

华为数通方向HCIP-DataCom H12-831题库(多选题:101-120)

第101题 LSR对收到的标签进行保留,且保留方式有多种,那么以下关于LDP标签保留一自由方式的说法 A、保留邻居发送来的所有标签 B、需要更多的内存和标签空间 C、只保留来自下一跳邻居的标签,丢弃所有非下一跳铃邻居发来的标签 D、节省内存和标签空间 E、当IP路由收敛、下一跳…

CVPR 2023 | 主干网络FasterNet 核心解读 代码分析

本文分享来自CVPR 2023的论文&#xff0c;提出了一种快速的主干网络&#xff0c;名为FasterNet。 论文提出了一种新的卷积算子&#xff0c;partial convolution&#xff0c;部分卷积(PConv)&#xff0c;通过减少冗余计算和内存访问来更有效地提取空间特征。 创新在于部分卷积…