python之计算平面点集的的面积

在当今数据驱动的世界中,计算平面点集的最小外接轮廓面积被广泛应用于各种实际场景中。它是一项重要而魅力十足的任务,旨在找到一个最小的矩形或多边形区域,能够完全包围给定的离散点集。这个看似简单的问题背后隐藏着许多挑战,需要结合数学、计算几何和优化方法来解决。

计算平面点集的最小外接轮廓面积对很多领域具有重大意义。首先,在计算机视觉中,它是目标检测和图像分割等任务的关键步骤。通过确定目标物体的最小外接轮廓面积,我们可以更好地理解和描述物体的形状,从而实现更准确的目标识别和跟踪。在自动驾驶系统中,该技术可用于检测道路边缘或障碍物边界,从而帮助车辆规划路径并做出决策。此外,在工业制造、地理信息系统和城市规划等领域,计算点集的最小外接轮廓面积可以提供宝贵的空间分析和形状建模工具。

在过去的几十年里,研究者们积极探索计算平面点集最小外接轮廓面积的求解方法,并取得了重要的进展。早期的方法主要基于几何学原理,如旋转卡壳、凸包和分治策略等。这些传统的方法虽然在某些场景下表现良好,但对于复杂点集和大规模数据的处理存在一定限制。近年来,随着计算机性能的提升和数值优化算法的发展,一些新颖且高效的方法应运而生。

最近的研究工作集中在提高算法的效率和鲁棒性。基于机器学习的方法,如支持向量机(SVM)和人工神经网络,被引入以改善凸包计算的精度和速度。此外,通过多核处理、并行计算和GPU加速等技术,研究人员努力提高算法的运行效率,使其能够处理更大规模的点云数据。同时,深度学习技术的发展也为计算平面点集最小外接轮廓面积带来了新的可能性,例如使用卷积神经网络进行分割和轮廓估计。

值得一提的是,随着三维扫描技术的广泛应用,研究者们开始将计算平面点集最小外接轮廓面积推广到三维点云数据,并发展了一系列新的算法。这些算法旨在从复杂的三维场景中提取最小外接体积或曲面,具有很高的实用价值。

总结而言,计算平面点集最小外接轮廓面积是计算机视觉、图像处理和模式识别等领域中一个关键且挑战性的任务。通过求解这个问题,我们可以从离散的点集中提取出有价值的形状信息,为目标检测、自动驾驶和空间建模等应用提供强大的支持。随着技术的不断进步与创新,我们可以期待在这个领域看到更多令人激动的发展和突破。

下面介绍两个案例:

1、先计算凸包,再计算面积

凸包法是一种常用的方法来计算平面点集的最小外接轮廓面积。它基于数学几何原理,通过找到形成凸包的点集来估计最小外接轮廓面积。以下是凸包法的优点和缺点:

优点:

简单直观:凸包法的基本原理易于理解。它可以通过简洁的步骤将点集收束为一个多边形或凸多边形,容易在可视化和概念上表示。

准确性:当点集满足凸性时,凸包法能够提供精确的最小外接轮廓面积。这使得凸包法在许多实际情况下产生可靠的结果。

快速计算:相比其他复杂的算法,凸包法具有很高的计算效率。在点集规模较小时,凸包法通常能够在很短的时间内计算出最小外接轮廓面积。

适用广泛:凸包法适用于各种不同类型的点集,不论其分布是否均匀、是否存在噪声点等。因此,凸包法具有广泛的适用性,并且可以用于多个领域中的问题求解。

缺点:

复杂形状限制:凸包法在处理具有复杂形状的点集时可能存在局限性。由于凸包要求生成一个完全包围点集的凸多边形,因此对于非凸点集或存在内部空洞的点集,凸包法无法提供准确和合理的结果。

对噪声点敏感:凸包法对噪声点较为敏感。当点集中存在离群点或噪声点时,这些点可能会影响最终的凸包结果,导致外接轮廓面积计算不准确。

计算效率随规模增加:虽然凸包法在小规模点集上运行速度较快,但随着点集规模的增加,其计算效率可能迅速下降。对于大规模点集,凸包法的计算时间可能变得相当昂贵。

实现复杂性:尽管凸包法的基本原理简单易懂,但实现优化的凸包算法可能需要复杂的编程技巧和数据结构支持。这使得实施和调试凸包算法可能具有一定的挑战性。

综上所述,凸包法作为计算平面点集最小外接轮廓面积的一种常见方法,具有诸多优点。它简单直观、计算快速,并适用于各种情况。然而,它在处理复杂形状和存在噪声点的点集时可能存在一些局限性。因此,在实际应用中,我们需要根据问题的特点选择合适的方法或结合其他技术来解决具体的求解任务。


import numpy as np
from scipy.spatial import ConvexHull
import matplotlib.pyplot as plt

# 指定字体文件路径
import matplotlib.font_manager as fm
font_path = 'C:/Windows/Fonts/simhei.ttf'
prop = fm.FontProperties(fname=font_path)

# 定义椭圆上的点作为示例点集
points = np.array([[1, 0], [0.866, 0.5], [0.5, 0.866], [0, 1], [-0.5, 0.866], [-0.866, 0.5], 
                   [-1, 0], [-0.866, -0.5], [-0.5, -0.866], [0, -1], [0.5, -0.866], [0.866, -0.5]])

# 计算点集的凸包
hull = ConvexHull(points)

# 获取凸包的顶点坐标
vertices = hull.points[hull.vertices]

# 绘制凸包边界和点集
plt.plot(points[:,0], points[:,1], 'o', label='点集')
plt.plot(vertices[:,0], vertices[:,1], 'r--', lw=2, label='凸包边界')
plt.xlabel('x', fontproperties=prop)
plt.ylabel('y', fontproperties=prop)
plt.title('凸包与点集', fontproperties=prop)
plt.legend(prop=prop)
plt.grid(True)
plt.axis('equal')
plt.show()

# 计算凸包顶点形成的多边形的面积
area = hull.area

print("凸包顶点坐标:\n", vertices)
print("凸包面积大小:", area)

图片

凸包顶点坐标:

 [[-1.     0.   ]

 [-0.866 -0.5  ]

 [-0.5   -0.866]

 [ 0.    -1.   ]

 [ 0.5   -0.866]

 [ 0.866 -0.5  ]

 [ 1.     0.   ]

 [ 0.866  0.5  ]

 [ 0.5    0.866]

 [ 0.     1.   ]

 [-0.5    0.866]

 [-0.866  0.5  ]]

凸包面积大小:6.211565981473167(理论面积为np.pi)

注意:面积还有一定差距,可以取多一些点数,减小误差

2、把平面点集轮廓映射到图像中,通过opencv函数cv2.contourArea计算面积

这种方法也适用于内凹的点集,解决凸包法不能完成的任务。


import matplotlib.pyplot as plt
import cv2
import numpy as np

# 圆弧参数
radius = 1.0
start_angle = 0  # 起始角度,单位:度
end_angle = 270  # 终止角度,单位:度
num_points_arc = 1000  # 圆弧上的数据点个数

# 起始角度和终止角度转换为弧度
start_angle_rad = np.deg2rad(start_angle)
end_angle_rad = np.deg2rad(end_angle)

# 计算圆弧上点的极坐标
theta_arc = np.linspace(start_angle_rad, end_angle_rad, num=num_points_arc)
x_arc = 0+radius * np.cos(theta_arc)
y_arc = 0+radius * np.sin(theta_arc)

# 直线参数
line1_start_point = (0, 0)
line1_angle = start_angle_rad
line2_start_point = (0,0)
line2_angle = end_angle_rad

# 计算直线上的数据点
num_points_line = 1000  # 每条直线上的数据点个数
l=np.linspace(0, radius, num=num_points_line)

x_line1 = line1_start_point[0]+l*np.cos(line1_angle)
y_line1 = line1_start_point[1]+l*np.sin(line1_angle)

x_line2 = line2_start_point[0]+l*np.cos(line2_angle)
y_line2 = line2_start_point[1]+l*np.sin(line2_angle)

# 将数据点合并
X = [x_line1,x_arc,x_line2[::-1]]
Y = [y_line1,y_arc,y_line2[::-1]]

fig = plt.figure(figsize=(5, 5))
plt.rcParams['xtick.direction'] = 'in'  # 将x周的刻度线方向设置向内
plt.rcParams['ytick.direction'] = 'in'  # 将y轴的刻度方向设置向内
clist = ['blue', 'red', 'green', 'black', 'darkgreen', 'lime', 'gold', 'purple', 'green', 'cyan', 'salmon', 'grey',
             'mediumvioletred', 'darkkhaki', 'gray', 'darkcyan', 'violet', 'powderblue']

# for i in range(len(X)):
#     plt.plot(X[i],Y[i], c=clist[i%17])
# plt.tight_layout()
# plt.show()
# 创建空白图像
blank_image = np.zeros((1400, 1400), dtype=np.uint8)

#坐标变换
X_new=np.array(X).flatten()+radius
Y_new=-1*np.array(Y).flatten()+radius
# 转换为整型数组
X_shifted = np.array(X_new*700, dtype=np.int32)
Y_shifted = np.array(Y_new*700, dtype=np.int32)
# 绘制轮廓
points = np.column_stack((X_shifted, Y_shifted))
cv2.drawContours(blank_image, [points], contourIdx=0, color=255, thickness=3)

# 计算轮廓围成的面积
area = cv2.contourArea(points)/700/700

# 理论面积计算
theta_span = end_angle_rad - start_angle_rad
theoretical_area = 0.5 * radius * radius * theta_span

# 输出面积结果并与理论面积对比
print("轮廓围成的面积:", area)
print("理论面积:", theoretical_area)
print("面积差值:", area - theoretical_area)

# 显示图像
cv2.namedWindow('Contour Image',0)
cv2.imshow("Contour Image", blank_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

轮廓围成的面积:2.3565163265306124

理论面积:2.356194490192345

面积差值:0.0003218363382675449

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/108572.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HTML5+CSS3+Vue小实例:路飞出海的动画特效

实例:路飞出海的动画特效 技术栈:HTML+CSS+Vue 效果: 源码: 【HTML】 <!DOCTYPE html> <html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"><meta name="viewport" content=&…

windows下OOM排查

如下有一段代码 package com.lm.demo.arthas.controller;import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController;import java.util.A…

车载音频项目

加我微信hezkz17进数字音频系统研究开发交流答疑群(课题组) ー 1&#xff0e;负责此项目的音频链路的设计及其实现 在ADSP21375上实现音频链路的处理。如噪声门&#xff0c;压限器&#xff0c;高低通&#xff0c;PEQ、各种效果等。 2&#xff0e;负责DSP与MCU端SPI协议实现。M…

Python文件——使用Python读取txt文件

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 本文专栏&#xff1a;Python专栏 专栏介绍&#xff1a;本专栏为免费专栏&#xff0c;并且会持续更新python基础知识&#xff0c;欢迎各位订阅关注. 目录 一、文件的编码 1. 什么是编码 2. 常见的编码 二、P…

【纯离线】Ubuntu离线安装ntp时间同步服务

Ubuntu离线安装ntp服务 准备阶段&#xff1a;下载安装包 apt-get download ntp apt-get download ntpdate 一、服务端( 192.166.6.xx) 1、环境准备 先判断是否已安装 systemd-timesyncd systemctl is-active systemd-timesyncd 如果返回结果是 active&#xff0c;则表示…

文件夹批量改名:如何在文件夹名左边添加递增的自动编号

在文件管理的过程中&#xff0c;我们有时需要对文件夹进行重命名&#xff0c;使其更具区分度和可读性。为了实现这一目标&#xff0c;我们可以采用在文件夹名左边添加递增的自动编号的方法。本文将介绍云炫文件管理器如何进行文件夹批量改名&#xff0c;以在文件夹名左边添加递…

mathtype7.4破解永久激活码

MathType(数学公式编辑器)是由Design Science公司研发的一款专业的数学公式编辑工具。MathType功能非常强大&#xff0c;尤其适用于专门研究数学领域的人群使用。使用MathType让你在输入数学公式的时候能够更加的得心应手&#xff0c;各种复杂的运算符号也不在话下。 MathType最…

Vue3.0插槽

用法&#xff1a; 父组件App.vue <template><div><!--将html代码插入到子组件中带默认名称的插槽中--><AChild><!--这段html会插入到AChild组件中<slot></slot>插槽中--><!-- 注意&#xff1a;写在父组件中的html代码只能在父组…

百度网盘使用指南

文章目录 备份篇手机文件备份电脑文件备份 查找篇移动端PC端 文件操作文件解压文件扫描PDF工具图片工具音频操作 备份篇 手机文件备份 在百度网盘APP种点击 我的–设置–自动备份设置 里边有相册备份, 文档备份, 微信文件备份, 手机通讯录, 短信, 通话备份等功能 电脑文件备…

目标检测类项目数据集汇总

一、玩手机数据集及检测 玩手机数据集下载地址分享: https://download.csdn.net/download/qq_34717531/19870205 二、狗的数据集及检测 狗目标检测数据集下载地址分享:https://download.csdn.net/download/qq_34717531/20813390 三、猫数据集及检测 猫数据集下载地址分享: ht…

回归算法|长短期记忆网络LSTM及其优化实现

本期文章将介绍LSTM的原理及其优化实现 序列数据有一个特点&#xff0c;即“没有曾经的过去则不存在当前的现状”&#xff0c;这类数据以时间为纽带&#xff0c;将无数个历史事件串联&#xff0c;构成了当前状态&#xff0c;这种时间构筑起来的事件前后依赖关系称其为时间依赖&…

c++设计模式三:工厂模式

本文通过一个例子简单介绍简单工厂模式、工厂模式和抽象工厂模式。 1.简单工厂&#xff08;静态&#xff09; 假如我想换个手机&#xff0c;换什么手机呢&#xff1f;可以考虑苹果或者华为手机&#xff0c;那我们用简单工厂模式来实现这个功能&#xff1a; 我们关注的产品是手…

基于群居蜘蛛算法的无人机航迹规划

基于群居蜘蛛算法的无人机航迹规划 文章目录 基于群居蜘蛛算法的无人机航迹规划1.群居蜘蛛搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要&#xff1a;本文主要介绍利用群居蜘蛛算法来优化无人机航迹规划。 …

【数据结构初阶】顺序表和链表(1)

顺序表和链表&#xff08;1&#xff09; 1.线性表2.顺序表2.1概念以及结构2.1.1静态顺序表2.1.2动态顺序表3.顺序表的实现3.1初始化内容3.2初始化函数3.3销毁函数3.4打印函数3.5扩容函数3.6尾插3.6尾删函数3.7头插函数3.8头删函数3.9查找函数3.10插入函数3.11删除函数3.12修改函…

拿到 phpMyAdmin 如何获取权限

文章目录 拿到 phpMyAdmin 如何获取权限1. outfile 写一句话木马2. general_log_file 写一句话木马 拿到 phpMyAdmin 如何获取权限 1. outfile 写一句话木马 尝试使用SQL注入写文件的方式&#xff0c;执行 outfile 语句写入一句话木马。 select "<?php eval($_REQU…

【软件安装】Windows系统中使用miniserve搭建一个文件服务器

这篇文章&#xff0c;主要介绍如何在Windows系统中使用miniserve搭建一个文件服务器。 目录 一、搭建文件服务器 1.1、下载miniserve 1.2、启动miniserve服务 1.3、指定根目录 1.4、开启访问日志 1.5、指定启动端口 1.6、设置用户认证 1.7、设置界面主题 &#xff08;…

挖掘业务场景的存储更优解

文章目录 第1章 如何用更优的数据存储方案&#xff0c;打造更稳定的架构&#xff1f;1.1 选用适合自己的数据存储方案1.1.1 关系型数据库1.1.2 非关系型数据库1.1.3 内存数据库 1.2 打造更稳定的架构1.2.1 分布式架构1.2.2 容灾备份1.2.3 监控报警1.2.4 自动化运维 1.3 案例分析…

Redis 原理缓存过期、一致性hash、雪崩、穿透、并发、布隆、缓存更新策略、缓存数据库一致性

redis过期策略 redis的过期策略可以通过配置文件进行配置 一、定期删除 redis会把设置了过期时间的key放在单独的字典中&#xff0c;定时遍历来删除到期的key。 1&#xff09;.每100ms从过期字典中 随机挑选20个&#xff0c;把其中过期的key删除&#xff1b; 2&#xff09;.…

python爬虫request和BeautifulSoup使用

request使用 1.安装request pip install request2.引入库 import requests3.编写代码 发送请求 我们通过以下代码可以打开豆瓣top250的网站 response requests.get(f"https://movie.douban.com/top250"&#xff09;但因为该网站加入了反爬机制&#xff0c;所以…

C语言 sizeof 函数内部进行计算

直接看代码 #include <stdio.h> int main() {int i 2;int j;j sizeof(i i);printf("i %d, j %d", i ,j);return 0; }执行结果&#xff1a; 可以看到 i的值一直是没有变的&#xff0c; j 是int类型下 sizeof占用的大小为 4个字节&#xff0c;不是i的 22…