回归算法|长短期记忆网络LSTM及其优化实现

本期文章将介绍LSTM的原理及其优化实现

在这里插入图片描述

在这里插入图片描述

序列数据有一个特点,即“没有曾经的过去则不存在当前的现状”,这类数据以时间为纽带,将无数个历史事件串联,构成了当前状态,这种时间构筑起来的事件前后依赖关系称其为时间依赖,利用这类依赖关系进行建模是对其进行学习的关键。

近年来,越来越多的神经网络模型被用于序列数据的预测,如股票、电力负荷、风电功率、心电信号等场景,并取得了不错的效果。

通常,神经网络模型可以分为两类:

一类是以BP神经网络为代表的神经网络,这类网络结构简单,但容易出现陷入局部极值、过拟合等问题,并且其并没有对于依赖关系进行利用;

另一类是更深层次、更高效的深度神经网络模型,如CNN、RNN、LSTM,这类网络是较为前沿和高效的预测模型,其能够拟合输入变量间的非线性复杂关系,并且对于RNN和LSTM来说,其能够克服传统神经网络没有记忆功能的问题,可以有效的根据历史信息进行学习和预测。相对于RNN,LSTM能避免RNN在长序列数据中出现的梯度消失或爆炸的问题,是最为流行的RNN(LSTM是在RNN基础上的改进),因此LSTM在序列数据学习中得到了广泛应用。

LSTM同样面临着隐含层神经元个数、学习率、迭代次数等超参数设置的问题,这些参数都将影响LSTM的预测精度,利用优化算法进行超参数的寻优比经验法更为科学高效,因此本文将详细介绍LSTM模型的原理及其优化实现。

00 目录

1 LSTM模型原理

2 优化算法及其改进概述

3 GWO-LSTM预测模型

4 代码目录

5 实验结果

6 源码获取

01 LSTM神经网络模型[1]

长短时记忆神经网络(LSTM)是Sepp Hochreiter和Jurgen Schmidhuber在1997年对递归神经网络(RNN)进行改进的算法。它旨在解决递归神经网络(RNN)产生的梯度消失问题,在长距离依赖任务中的表现也远好于RNN。LSTM模型的工作方式和RNN基本相同,但是LSTM模型实现了更为复杂的内部处理单元来处理上下文信息的存储与更新。

Hochreiter 等人主要引入了记忆单元和门控单元实现对历史信息和长期状态的保存,通过门控逻辑来控制信息的流动。后来Graves等人对LSTM单元进行了完善,引入了遗忘门,使得LSTM模型能够学习连续任务,并能对内部状态进行重置。

LSTM主要由三个门控逻辑(输入、遗忘和输出)实现。门控可以看作一层全连接层,LSTM对信息的存储和更新正是由这些门控来实现的。更具体地说,门控由Sigmoid函数和点乘运算实现。
在这里插入图片描述

这里分别使用i、f、o来表示输入门、遗忘门和输出门,O表示对应元素相乘,W和b分别表示网络的权重矩阵与偏置向量。在时间步为t时,LSTM隐含层的输入与输出向量分别为x,和h,,记忆单元为c,,输入门用于控制网络当前输入数据x,流入记忆单元的多少,即有多少可以保存到c,,其值为:

在这里插入图片描述

遗忘门是LSTM 的关键组成部分,可以控制哪些信息要保留哪些要遗忘,并且以某种方式避免当梯度随时间反向传播时引发的梯度消失和爆炸问题。遗忘门可以决定历史信息中的哪些信息会被丢弃,即判断上一时刻记忆单元ct-1中的信息对当前记忆单元ct的影响程度。
在这里插入图片描述

输出门控制记忆单元c,对当前输出值h,的影响,即记忆单元中的哪一部分会在时间步t输出。输出门的值及隐含层的输出值可表示为:
在这里插入图片描述

02 优化算法及其改进概述

前面的文章中作者介绍了许多种优化算法及其改进算法,

这里我们以灰狼优化算法为例,其他算法同理。作者的代码很多都是标准化的,其他文章里的算法替换起来也很容易。

03 GWO-LSTM预测模型

超参数在一定程度上会影响LSTM网络的拟合精度,因此必须获得适合不同特征数据的最佳超参数值。然而,目前还没有成熟的理论来获得合适的超参数值。因此,本文采用灰狼优化算法,得到LSTM的最佳网络超参数值,包括初始学习率、隐含层神经元数、批次大小和训练迭代次数,即[lr,L1,L2,Batch,k]。其中增加隐藏层数可提高模型的非线性拟合能力,但同时也使模型更复杂,预测时间随之增加,甚至引发过拟合问题﹐因此本文将隐藏层数选择的范围控制在2层。优化参数的约束条件设置如下:在这里插入图片描述

以MSE作为适应度,GWO-LSTM预测模型的流程图如下:在这里插入图片描述

04 实验结果

以均方根差(Root Mean Square Error,RMSE) 、平均绝对百分误差( Mean Absolute Percentage Error,MAPE) 、平均绝对值误差 ( Mean Absolute Error,MAE) 和可决系数(coefficient of determination,R^2)作为序列数据拟合的评价标准。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

图中MSGWO为作者前面改进的灰狼优化算法

05 源码获取

代码注释详细,一般只需要替换数据集就行了,注意数据的行是样本,列是变量,源码提供3个版本

1.免费版

其主要是LSTM预测模型,包含Matlab和Python的程序,对于需要进行一些简单预测或者是想学习LSTM算法的同学足够了。

在这里插入图片描述

获取方式——GZH(KAU的云实验台)后台回复:LSTM

2.付费版1

主要是GWO优化LSTM的预测模型,这个只包含了Matlab程序,包括BP、LSTM、GWO-LSTM的预测对比。因为最近比较忙,Python就没有出,程序的注释详细,易于替换,卡卡之前介绍过的智能优化算法都可以进行替换。

在这里插入图片描述
在这里插入图片描述

获取方式——GZH后台回复:GWOLSTM

3.付费版2

主要是MSGWO优化LSTM的预测模型,这个只包含了Matlab程序,包括BP、LSTM、GWO-LSTM、MSGWO-LSTM的预测对比,也即在结果展示中的图片,其中MSGWO即为卡卡前面的融合多策略的改进灰狼优化算法的文章,程序的注释详细,这部分程序包含了函数测试、预测模型两个部分,可以用来发这类方向的文章,当然你也可以在卡卡算法的基础上再作创新改进,比如预测模型上可以再对预测误差做一个预测模型进行级联,或者对改进的灰狼算法再引入别的修改策略等等。

在这里插入图片描述

在这里插入图片描述

获取方式——GZH后台回复:MSGWOLSTM

[1]游皓麟著.Python预测之美:数据分析与算法实战[M] .电子工业出版社

另:如果有伙伴有待解决的优化问题(各种领域都可),可以发我,我会选择性的更新利用优化算法解决这些问题的文章。

如果这篇文章对你有帮助或启发,可以点击右下角的赞/在看(ง •̀_•́)ง(不点也行)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/108558.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

c++设计模式三:工厂模式

本文通过一个例子简单介绍简单工厂模式、工厂模式和抽象工厂模式。 1.简单工厂(静态) 假如我想换个手机,换什么手机呢?可以考虑苹果或者华为手机,那我们用简单工厂模式来实现这个功能: 我们关注的产品是手…

基于群居蜘蛛算法的无人机航迹规划

基于群居蜘蛛算法的无人机航迹规划 文章目录 基于群居蜘蛛算法的无人机航迹规划1.群居蜘蛛搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用群居蜘蛛算法来优化无人机航迹规划。 …

【数据结构初阶】顺序表和链表(1)

顺序表和链表(1) 1.线性表2.顺序表2.1概念以及结构2.1.1静态顺序表2.1.2动态顺序表3.顺序表的实现3.1初始化内容3.2初始化函数3.3销毁函数3.4打印函数3.5扩容函数3.6尾插3.6尾删函数3.7头插函数3.8头删函数3.9查找函数3.10插入函数3.11删除函数3.12修改函…

拿到 phpMyAdmin 如何获取权限

文章目录 拿到 phpMyAdmin 如何获取权限1. outfile 写一句话木马2. general_log_file 写一句话木马 拿到 phpMyAdmin 如何获取权限 1. outfile 写一句话木马 尝试使用SQL注入写文件的方式&#xff0c;执行 outfile 语句写入一句话木马。 select "<?php eval($_REQU…

【软件安装】Windows系统中使用miniserve搭建一个文件服务器

这篇文章&#xff0c;主要介绍如何在Windows系统中使用miniserve搭建一个文件服务器。 目录 一、搭建文件服务器 1.1、下载miniserve 1.2、启动miniserve服务 1.3、指定根目录 1.4、开启访问日志 1.5、指定启动端口 1.6、设置用户认证 1.7、设置界面主题 &#xff08;…

挖掘业务场景的存储更优解

文章目录 第1章 如何用更优的数据存储方案&#xff0c;打造更稳定的架构&#xff1f;1.1 选用适合自己的数据存储方案1.1.1 关系型数据库1.1.2 非关系型数据库1.1.3 内存数据库 1.2 打造更稳定的架构1.2.1 分布式架构1.2.2 容灾备份1.2.3 监控报警1.2.4 自动化运维 1.3 案例分析…

Redis 原理缓存过期、一致性hash、雪崩、穿透、并发、布隆、缓存更新策略、缓存数据库一致性

redis过期策略 redis的过期策略可以通过配置文件进行配置 一、定期删除 redis会把设置了过期时间的key放在单独的字典中&#xff0c;定时遍历来删除到期的key。 1&#xff09;.每100ms从过期字典中 随机挑选20个&#xff0c;把其中过期的key删除&#xff1b; 2&#xff09;.…

python爬虫request和BeautifulSoup使用

request使用 1.安装request pip install request2.引入库 import requests3.编写代码 发送请求 我们通过以下代码可以打开豆瓣top250的网站 response requests.get(f"https://movie.douban.com/top250"&#xff09;但因为该网站加入了反爬机制&#xff0c;所以…

C语言 sizeof 函数内部进行计算

直接看代码 #include <stdio.h> int main() {int i 2;int j;j sizeof(i i);printf("i %d, j %d", i ,j);return 0; }执行结果&#xff1a; 可以看到 i的值一直是没有变的&#xff0c; j 是int类型下 sizeof占用的大小为 4个字节&#xff0c;不是i的 22…

牛客题霸 -- HJ43 迷宫问题

解题步骤; 参考代码&#xff1a; //最短路径下标 vector<vector<int>> MinPath; //临时路径 vector<vector<int>> tmp; int row 0; int col 0; void FindMinPath(vector<vector<int>>& nums, int i, int j) {nums[i][j]1;tmp.push…

C# OpenCvSharp Yolov8 Face Landmarks 人脸特征检测

效果 项目 代码 using OpenCvSharp; using OpenCvSharp.Dnn; using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms;namespace OpenCvSharp_Yolov8_Demo {public partial class frmMain…

面试题之JavaScript经典for循环(var let)

如果你也在面试找工作&#xff0c;那么也一定遇到过这道for循环打印结果的题&#xff0c;下面我们来探讨下 var循环 for(var i 0; i < 10; i) {setTimeout(function(){console.log(i)}); } 先把答案写出来 下面来讲一下原因&#xff1a; 划重点 ① var ②setTimeout() …

段页式管理方式

一、分段、分页的优缺点 1.分页管理&#xff1a;内存空间利用率高&#xff0c;无外部碎片&#xff0c;只有少量页内碎片&#xff0c;以物理结构划分&#xff0c;不便于按逻辑方式实现信息共享和保护 2.分段管理&#xff1a;为段长过大分配连续空间会很不方便&#xff0c;会产生…

基于springboot实现校园疫情防控系统项目【项目源码+论文说明】

基于springboot实现校园疫情防控系统演示 摘要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&am…

MATLAB 安装教程(最新最全图文详解)

目录 一.简介 二.安装步骤 软件&#xff1a;MATLAB版本&#xff1a;2022b语言&#xff1a;简体中文大小&#xff1a;19.37G安装环境&#xff1a;Win11/Win10硬件要求&#xff1a;CPU2.6GHz 内存8G(或更高&#xff09;下载通道①百度网盘丨64位下载链接&#xff1a; https://pa…

公众号留言功能有必要开吗?如何开通留言?

为什么公众号没有留言功能&#xff1f;2018年2月12日&#xff0c;TX新规出台&#xff1a;根据相关规定和平台规则要求&#xff0c;我们暂时调整留言功能开放规则&#xff0c;后续新注册帐号无留言功能。这就意味着2018年2月12日号之后注册的公众号不论个人主体还是组织主体&…

海外问卷调查是怎么做的?全方位介绍!

橙河这样说&#xff0c;相信大家应该不难理解。 国外问卷调查目前主要有三种形式&#xff1a;口子查、站点查和渠道查。橙河自己做的是渠道查。 站点查是最早的问卷形式&#xff0c;意思是我们需要登录到问卷网站上&#xff0c;就可以做问卷了。但想要在网站上做问卷&#xf…

【微信小程序开发】学习小程序的网络请求和数据处理

前言 网络请求是微信小程序中获取数据和与服务器交互的重要方式。微信小程序提供了自己的API来处理网络请求&#xff0c;使得开发者可以轻松地在微信小程序中实现数据的获取和提交。本文将介绍微信小程序中的网络请求&#xff0c;包括使用wx.request发起GET和POST请求&#xf…

【Java】HashMap集合

Map集合概述和使用 Map集合概述 Interface Map<k,v> k&#xff1a;键值类型 v&#xff1a;值的类型 Map集合的特点 键值对 映射关系 Key 和 Value一个键&#xff08;Key&#xff09;对应一个值&#xff08;Value&#xff09;键不允许重复&#xff0c;值可以重复如…

打算翻译完H264文档分享(1)

前言&#xff1a; 大家周末好&#xff0c;今天来总结一下最近的学习状态&#xff1b;大家平时看公众号的文章发现推送的文章都是关于音视频的内容&#xff0c;最近有分享过很多关于h264编解码器的内容&#xff0c;我认为这块的内容非常重要&#xff0c;可能很多人听过编解码标准…