基于群居蜘蛛算法的无人机航迹规划

基于群居蜘蛛算法的无人机航迹规划

文章目录

  • 基于群居蜘蛛算法的无人机航迹规划
    • 1.群居蜘蛛搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用群居蜘蛛算法来优化无人机航迹规划。

1.群居蜘蛛搜索算法

群居蜘蛛算法原理请参考:https://blog.csdn.net/u011835903/article/details/108406547

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得群居蜘蛛搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用群居蜘蛛算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,群居蜘蛛算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/108553.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构初阶】顺序表和链表(1)

顺序表和链表(1) 1.线性表2.顺序表2.1概念以及结构2.1.1静态顺序表2.1.2动态顺序表3.顺序表的实现3.1初始化内容3.2初始化函数3.3销毁函数3.4打印函数3.5扩容函数3.6尾插3.6尾删函数3.7头插函数3.8头删函数3.9查找函数3.10插入函数3.11删除函数3.12修改函…

拿到 phpMyAdmin 如何获取权限

文章目录 拿到 phpMyAdmin 如何获取权限1. outfile 写一句话木马2. general_log_file 写一句话木马 拿到 phpMyAdmin 如何获取权限 1. outfile 写一句话木马 尝试使用SQL注入写文件的方式&#xff0c;执行 outfile 语句写入一句话木马。 select "<?php eval($_REQU…

【软件安装】Windows系统中使用miniserve搭建一个文件服务器

这篇文章&#xff0c;主要介绍如何在Windows系统中使用miniserve搭建一个文件服务器。 目录 一、搭建文件服务器 1.1、下载miniserve 1.2、启动miniserve服务 1.3、指定根目录 1.4、开启访问日志 1.5、指定启动端口 1.6、设置用户认证 1.7、设置界面主题 &#xff08;…

挖掘业务场景的存储更优解

文章目录 第1章 如何用更优的数据存储方案&#xff0c;打造更稳定的架构&#xff1f;1.1 选用适合自己的数据存储方案1.1.1 关系型数据库1.1.2 非关系型数据库1.1.3 内存数据库 1.2 打造更稳定的架构1.2.1 分布式架构1.2.2 容灾备份1.2.3 监控报警1.2.4 自动化运维 1.3 案例分析…

Redis 原理缓存过期、一致性hash、雪崩、穿透、并发、布隆、缓存更新策略、缓存数据库一致性

redis过期策略 redis的过期策略可以通过配置文件进行配置 一、定期删除 redis会把设置了过期时间的key放在单独的字典中&#xff0c;定时遍历来删除到期的key。 1&#xff09;.每100ms从过期字典中 随机挑选20个&#xff0c;把其中过期的key删除&#xff1b; 2&#xff09;.…

python爬虫request和BeautifulSoup使用

request使用 1.安装request pip install request2.引入库 import requests3.编写代码 发送请求 我们通过以下代码可以打开豆瓣top250的网站 response requests.get(f"https://movie.douban.com/top250"&#xff09;但因为该网站加入了反爬机制&#xff0c;所以…

C语言 sizeof 函数内部进行计算

直接看代码 #include <stdio.h> int main() {int i 2;int j;j sizeof(i i);printf("i %d, j %d", i ,j);return 0; }执行结果&#xff1a; 可以看到 i的值一直是没有变的&#xff0c; j 是int类型下 sizeof占用的大小为 4个字节&#xff0c;不是i的 22…

牛客题霸 -- HJ43 迷宫问题

解题步骤; 参考代码&#xff1a; //最短路径下标 vector<vector<int>> MinPath; //临时路径 vector<vector<int>> tmp; int row 0; int col 0; void FindMinPath(vector<vector<int>>& nums, int i, int j) {nums[i][j]1;tmp.push…

C# OpenCvSharp Yolov8 Face Landmarks 人脸特征检测

效果 项目 代码 using OpenCvSharp; using OpenCvSharp.Dnn; using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms;namespace OpenCvSharp_Yolov8_Demo {public partial class frmMain…

面试题之JavaScript经典for循环(var let)

如果你也在面试找工作&#xff0c;那么也一定遇到过这道for循环打印结果的题&#xff0c;下面我们来探讨下 var循环 for(var i 0; i < 10; i) {setTimeout(function(){console.log(i)}); } 先把答案写出来 下面来讲一下原因&#xff1a; 划重点 ① var ②setTimeout() …

段页式管理方式

一、分段、分页的优缺点 1.分页管理&#xff1a;内存空间利用率高&#xff0c;无外部碎片&#xff0c;只有少量页内碎片&#xff0c;以物理结构划分&#xff0c;不便于按逻辑方式实现信息共享和保护 2.分段管理&#xff1a;为段长过大分配连续空间会很不方便&#xff0c;会产生…

基于springboot实现校园疫情防控系统项目【项目源码+论文说明】

基于springboot实现校园疫情防控系统演示 摘要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&am…

MATLAB 安装教程(最新最全图文详解)

目录 一.简介 二.安装步骤 软件&#xff1a;MATLAB版本&#xff1a;2022b语言&#xff1a;简体中文大小&#xff1a;19.37G安装环境&#xff1a;Win11/Win10硬件要求&#xff1a;CPU2.6GHz 内存8G(或更高&#xff09;下载通道①百度网盘丨64位下载链接&#xff1a; https://pa…

公众号留言功能有必要开吗?如何开通留言?

为什么公众号没有留言功能&#xff1f;2018年2月12日&#xff0c;TX新规出台&#xff1a;根据相关规定和平台规则要求&#xff0c;我们暂时调整留言功能开放规则&#xff0c;后续新注册帐号无留言功能。这就意味着2018年2月12日号之后注册的公众号不论个人主体还是组织主体&…

海外问卷调查是怎么做的?全方位介绍!

橙河这样说&#xff0c;相信大家应该不难理解。 国外问卷调查目前主要有三种形式&#xff1a;口子查、站点查和渠道查。橙河自己做的是渠道查。 站点查是最早的问卷形式&#xff0c;意思是我们需要登录到问卷网站上&#xff0c;就可以做问卷了。但想要在网站上做问卷&#xf…

【微信小程序开发】学习小程序的网络请求和数据处理

前言 网络请求是微信小程序中获取数据和与服务器交互的重要方式。微信小程序提供了自己的API来处理网络请求&#xff0c;使得开发者可以轻松地在微信小程序中实现数据的获取和提交。本文将介绍微信小程序中的网络请求&#xff0c;包括使用wx.request发起GET和POST请求&#xf…

【Java】HashMap集合

Map集合概述和使用 Map集合概述 Interface Map<k,v> k&#xff1a;键值类型 v&#xff1a;值的类型 Map集合的特点 键值对 映射关系 Key 和 Value一个键&#xff08;Key&#xff09;对应一个值&#xff08;Value&#xff09;键不允许重复&#xff0c;值可以重复如…

打算翻译完H264文档分享(1)

前言&#xff1a; 大家周末好&#xff0c;今天来总结一下最近的学习状态&#xff1b;大家平时看公众号的文章发现推送的文章都是关于音视频的内容&#xff0c;最近有分享过很多关于h264编解码器的内容&#xff0c;我认为这块的内容非常重要&#xff0c;可能很多人听过编解码标准…

RabbitMQ学习04

文章目录 发布确认1. 发布确认的原理2. 发布确认的策略2.1.开启发布确认的方法2.2.单个确认2.3.批量确认发布2.4.异步确认发布2.5.如何处理异步未确认消息2.6 总结&#xff1a; 发布确认 1. 发布确认的原理 生产者将信道设置成 confirm 模式&#xff0c;一旦信道进入 confirm …

数据结构上机实验——二叉树的实现、二叉树遍历、求二叉树的深度/节点数目/叶节点数目、计算二叉树度为1或2的节点数、判断二叉树是否相似

文章目录 数据结构上机实验1.要求2.二叉树的实现2.1创建一颗二叉树2.2对这棵二叉树进行遍历2.3求二叉树的深度/节点数目/叶节点数目2.4计算二叉树中度为 1 或 2 的结点数2.5判断2棵二叉树是否相似&#xff0c;若相似返回1&#xff0c;否则返回0 3.全部源码测试&#xff1a;Bina…