【Linux】MAC帧协议 + ARP协议

文章目录

  • 📖 前言
  • 1. 数据链路层
  • 2. MAC帧格式
  • 3. 再谈局域网
  • 4. ARP协议
    • 4.1 路由器的转发过程:
    • 4.2 ARP协议格式:
  • 5. 如何获得目的MAC地址

📖 前言

在学完网络层IP协议之后,本章我们将继续向下沉一层,进入到数据链路层的学习。
该层有两个重要的协议需要我们来学习,一个是ARP协议,另一个就是MAC帧协议,这二者都是处于数据链路层。
ARP协议在MAC帧协议的上一层,它们属于上下层的关系。老规矩,我们先来认识报头的各个字段,再来学习它们的作用。搬好小板凳,我们马上开讲啦…


1. 数据链路层

在内网(局域网)当中要进行转发的时候,首先要考虑的是,数据怎么从A主机送到出口路由器当中,这个工作就是数据链路层要解决的问题了。

IP地址的核心工作是提供一种能力,将数据从A主机经过路径选择交给B主机,一定是有目的IP不断地查路由表。

但是A和B根本就不在一个网段, 首先要解决的是将数据先从A主机送到下一跳的能力!!

当数据进行转发的时候,就是将数据从一个子网送到另一个子网的过程(重点):

因为路由器是横跨两个子网的,所以只要将数据报转发到子网的路由器,这个路由器集联到下个子网的话,我们把这种在局域网内转发的行为,也可以称之为跨网络转发。

交付到路由器是一个内网转发的行为,但是逻辑上相当于将数据包从一个子网交到了下一个子网。

数据链路层能够将数据发送到内网中的任一台主机,也一定能将数据送到内网当中的任意一台路由器。只要这台路由器横跨两个网段,把数据交给这个路由器的过程,就意味着将数据交给了另一个网段,也就实现了跨网络传输的功能。

小结:

  • 数据链路层: 提供了在内网中,从一点到另一点的能力。
  • 网络层: 提供了寻找路径的能力。

数据链路层 + 网络层就能提供把数据从A主机跨网络,经过路径选择送到B主机的能力。

  • 一旦此层转发有问题,传输层再继续让我们重发。
  • 这几层就提供了将数据从A主机经过路径选择可靠的送到B主机的能力。
  • 只要A主机能到B主机,那么就一定能从B主机到A主机。

所以传输,网络,链路核心解决的是数据包可靠传送的问题。


2. MAC帧格式

MAC帧(Media Access Control Frame)是在计算机网络中用于数据传输的基本单位。它包含了数据链路层的头部和尾部,用于在物理介质上传输数据。

在这里插入图片描述
目的地址和源地址: 目的MAC地址和源MAC地址。

  • 每一台主机在数据链路层当中都要有自己的身份标识,就是通过MAC地址标识的。
  • MAC地址通常是48位的植入到网卡当中的具有唯一性标识的地址。
  • 虽然全球唯一但是要求在局域网内唯一就可以了。

以太网或者令牌环网,是局域网当中所采用的标准:

  • 局域网转发这件事上,底层网络通信的方式是有差异的,我们重点讲的是以太网帧格式。
  • 底层网络有差异并不影响网络在全球的使用,原因就是有IP地址的存在,IP全球是唯一的。

报头和有效载荷如何分离:如何解包?

  • 目的地址,原地址和类型固定大小的,最后有个CRC也是固定大小的。
  • 所以以太网帧格式附加的相关的报头或者校验字段一共是18Byte。
  • 在对帧格式在做提取时,可以6 Byte,6 Byte,2 Byte提取报头,再将最后4Byte扔掉,剩下的就是有效载荷。
  • 所以能拆包也就一定能封装。

未来一个收到了MAC帧的主机,应该如何向上进行交付:如何分用?

  • 两个字节的类型,我们称之为帧类型,通常代表的是有效载荷应该向上交付给哪一个协议。
  • 例如:如果帧类型是0800对应的有效载荷就是IP数据包。
  • 其他的类型就是对应的不同的字段。
  • 所以就能知道数据载荷字段是什么类型,进一步再向上交付就可以了。

帧类型:

  • 在MAC(媒体访问控制)帧协议中,类型字段(Type Field)是用来指示数据帧中所携带的上层协议类型的字段。
  • 它位于MAC帧的报头部分,并占据2个字节(16位)。
  • 类型字段的作用是告诉接收方如何解析数据帧的有效载荷部分。
  • 通过读取类型字段的值,接收方可以确定上层协议的类型,并将数据帧传递给相应的协议栈进行进一步处理。

类型字段可以是:

  • 0x0800:表示IPv4协议。
  • 0x86DD:表示IPv6协议。
  • 0x0806:表示ARP(地址解析协议)。
  • 0x8100:表示VLAN(虚拟局域网)标记协议。

3. 再谈局域网

局域网内,一个主机如何知道自己的报文应该交给哪台主机呢?是由报文所要去的目的IP地址决定的!!

将报文丢在局域网当中,每台主机都要收到这个报文:

  • 凡是在局域网中的所有主机,无时无刻都要从局域网当中抓数据。
  • 因为随时随地都要从局域网中拿数据。
  • 主要局域网中有数据了,所有的主机都必须将报文拿到自己的主机里面。
  • 因为只有拿到才能确认这个数据是不是发给自己的。
  • 不管是不是发给自己的对于这台主机来讲都是有意义的。

数据在局域网中传输:

  • 每一个主机都要获取。
  • 每一个主机的哪一层协议先获取这个数据帧呢?
    • 数据链路层(不考虑物理层),网络永远都是终于链路层始于链路层的。
  • 每一个主机数据链路层协议的解析(解包 + 分用)。
  • 对比目的mac地址和自己的mac地址是否相同。
    • 相等:向上交付(根据类型),分用。
    • 不相等:丢弃,一旦底层将数据包丢弃了,上层就不知道有这个数据包的存在了。

抓包:

  • 网卡有一种模式可以被设置叫做混杂模式。
  • 网卡就不做数据筛选,直接将局域网读到的数据一股脑网上交付,这个就叫做抓包。

数据碰撞:

  • 当多台主机同时向局域网内发送数据时,冲突吗?—— 冲突!!
  • 因为在网络中走的都是一些光电信号,会互相进行干扰,那么谁发送的数据都没办法处理。
  • 所以就要让冲突的几台主机,随机休眠上一段时间,再进行在局域网当中对数据做重发。
  • 我们把这个局域网也叫做一个碰撞域。

交换机:

  • 因为交换机这样的设备存在,将大的局域网划分成小的区域。
  • 这个小的区域当中,合法请求转发,再小的区域中就能完成的通信过程就不要往外面却散了。
  • 进而可以减少一个一个碰撞域的体积。
  • 交换机除了在局域网当中进行数据帧转发(不转也能发送),核心工作:划分碰撞域。
  • 在一定程度上,减缓主机之间碰撞的可能性。

要明确几点:

  • 主机越多越好,还是越少越?
    • 好肯定是越少越好了,发生碰撞的概率越低
  • 交换机或网桥:划分碰撞域(硬件上)。
    • 网卡和交换机都是工作在数据链路层的设备。
  • 软件上减少局域网内碰撞的概率:
  • 一般MAC帧一般体积不要过大,要对得上MTU的要求。

网络层IP报文分片的原因:

  • 一旦碰撞了就是否定了之前所做的工作,曾经花费的成本就付之东流了。
  • 所以MAC帧的体积不要太大,就要对上层提要求。
  • 要求IP层发送的数据包不要太大,所以IP层才会分片,才有了MTU这样的概念。
  • MAC帧规定上层交给它的数据(IP报文)不能超过1500Byte

碰撞域在物理上减少主机的个数,在软件上减少报文的大小,进而就可以减少碰撞,还有一些碰撞避免的算法。

数据包的大小体积不由MAC帧决定(它只提标准),更不由网络层决定(它只是个跑腿的),而是由传输层(TCP/UDP) 决定,传输层决定了IP报文要不要分片的问题。


4. ARP协议

4.1 路由器的转发过程:

在这里插入图片描述

  • 当路由器接收到一个数据包时,它首先会解析以太网帧,提取出其中的MAC地址信息。
  • 然后,路由器会根据目标IP地址在路由表中查找下一跳的信息。
  • 接下来,路由器会封装数据包为新的以太网帧,更新目标MAC地址为下一跳的MAC地址,并将数据包发送到下一个路由器。这个过程被称为数据包的转发。
  • 在下一个路由器上,类似的过程会再次发生。该路由器会解析以太网帧,提取出目标IP地址,并根据路由表确定下一跳的信息。
  • 然后,它会封装数据包为新的以太网帧,更新目标MAC地址,并将数据包发送到下一个路由器或目标主机。

这样,数据包通过一系列的路由器转发,最终到达目标主机所在的网络。每个路由器都负责解析和封装以太网帧,以便在不同网络节点之间进行数据包的转发和路由选择。

4.2 ARP协议格式:

当我们数据包到了对方子网入口路由器时,怎么将数据包给指定主机呢?

在这里插入图片描述
路由器D只知道它收到的报文,将来是要给IP为主机C的IP的主机,并不知道主机C的MAC地址,所以没办法发送。

—— 所以有了ARP协议。

  • 同层协议也有上下关系,ARP协议是MAC帧协议的上层。
  • MAC帧协议数据除了是IP报文,也可能有ARP这样的协议充当MAC帧的有效载荷。

当路由器D收到了报文之后,并不知道目的主机的MAC地址:

  • 那么能否确定该要找的主机就在这个局域网里呢?
    • 能知道!!因为当前是根据目的IP地址来判断的。
    • 具体来说就是根据网络号判断的。
  • 只要判断在这个局域网,那么就在通信之前先进行ARP请求,得到主机C的MAC地址。
  • 然后再路上封装MAC帧,将报文准确的一对一交给主机C。
  • 至此就完成了数据包转发。

在这里插入图片描述
假设有主机A和主机B,主机A只知道主机B的IP地址,但是并不知道主机B的MAC地址。

硬件类型: 指链路层网络类型,1为以太网。

协议类型: 指要转换的地址类型,0x0800为IP地址。

硬件地址长度: 6个字节。

协议地址长度: 4个字节(IPv4)。

发送端以太网地址: MAC A

发送端IP地址: IP A

目的以太网地址:F

目的IP地址: IP B

路由器然后将整个报文封到了MAC帧的有效载荷,然后将数据帧转出去。

而数据帧在转的时候也不知道要转给谁,所以目的地址填的也是全F。
所以这个数据帧在转发的时候,在局域网当中就全部被转发,以播的形式被每个主机都收到了。


5. 如何获得目的MAC地址

路由器MAC帧将ARP封装到了自己的有有效载之后,就要在局域网内广播:

  • 那么每个主机都要提取,目的地址是全F,每一台主机都要处理(目的地址广播所有主机都要处理)。
  • 每一台主机都要提取MAC帧的帧类型,帧类型是0806发现是ARP。
  • 每一个主机都要将报文解开,将有效载荷交给上层ARP协议。
  • ARP层接收到了先看目的IP地址,所有的主机都会拿着目的IP地址与自身的IP地址对比。
  • 如果请求不是自己的,就在ARP层将数据包丢弃了。
  • 这时是在ARP层丢弃的,并不是在MAC帧层丢弃的,但也是在数据链路层。

op字段为1表示ARP请求,op字段为2表示ARP应答。

  1. 任何一台主机,可能同时在向别的主机发起ARP,也在接受别的主机给他的ARP应答!
  2. 任何一台主机,都可能被发起ARP请求。

对于任何一台主机(重点):

  • 发出:
    • 一定发出的是ARP的请求。
  • 接收:
    • 别人向我发起的ARP请求。
    • 我向别人发起ARP请求时,得到的ARP响应。

假设局域网内从A主机发送给B主机具体流程:

主机A要发起ARP了,填写报文的相应字段。主机A构建了一个ARP请求,并不是直接发过去的,而是交付给下一层。

在这里插入图片描述
局域网内,发出去的数据包一定能被主机B收到!!

主机B除外的其他主机收到报文后:

  • 其他主机也能拿到这个报文,因为是广播,目的MAC地址全F。
  • 于是其他主机就开始处理这个报文,在MAC帧层解包,然后将有效载荷交付给上一层(ARP层)。
  • ARP层首先要提取出op字段,先根据op来判断这次的ARP报文是请求还是响应。
  • 然后立马再看目的IP,一看填的是IPB和自己不一样,所以其他主机直接将报文丢弃。

主机B收到报文后:

  • 与此同时,主机B也要做同样的工作,MAC帧层也要将报文的有效载荷交给ARP层。
  • 主机B也要先提取op,发现是1,那就是请求。
  • 然后立马再看目的IP,一看填的是IPB和自己的一样。
  • 再看是哪个主机要请求主机B的MAC地址,提取出发送端以太网地址,和发送端IP地址。

主机B再下来就要构建一个ARP应答:

在这里插入图片描述
然后MAC帧就封装好了发送到局域网里,其他的主机也能收到,只不过在MAC帧层提取以太网目的地址时,发现和自己不一样,直接就将报文丢弃了。

所以第一次丢弃(发送时)和第二次丢弃(响应时)是不一样的!!第一次是在ARP层丢弃的,第二次是在MAC帧层丢弃的。

主机A收到报文后:

  • 于是主机A收到了报文,在MAC帧层提取报头中的以太网目的地址,发现数据就是发给主机A的。
  • 帧类型是0806是ARP,所以解包将报文直接向上交付给自己的ARP层。
  • 接下来ARP层先看op,值为2代表的是应答。
  • 就意味着主机A曾经向别的主机发起过ARP请求,这个时候请求的那个主机给我应答了。
  • 这时主机A才获取发送端的以太网地址,发送端的IP地址。

所以主机A就得到了主机B,IP为B的主机的MAC地址。然后再将报文重新封装成MAC帧再定向的发送给主机B,此时就能正常的进行通信了。

衍生问题:

如果远方的发送主机,非常高频的向主机B发数据的话,难道每次发送每一个报文的时候都要遵守先ARP得到MAC地址,然后再向主机B发送的过程吗?

  • 这是不是有点挫了?这样效率太低了!!
  • ARP肯定不是每一次都要发起的,需要被缓存起来!谁请求?谁缓存!!
  • 缓存的是目的IP和目的MAC的映射关系。
  • 一旦经过一次ARP得到目的IP和目的MAC地址对的映射关系,在系统层面上缓存起来。
  • 往后的再发的报文直接拿着目的IP去查表查到MAC地址就好了,然后再将报文发过去。

万一主机B的MAC地址发生变化了:

  • 比如说这个主机不联网退出了,重新又接入了一台主机。
  • 那么这个IP地址就被新主机拿到了(动态分配IP)。
  • 所以这个缓存是暂时缓存,一般是15 ~ 20分钟(可以配置)。

这个缓存有个特点,因为MAC地址一直在变,所以就注定了这个缓存要保存最新的MAC地址。只要ARP比较新,就会重新更改缓存数据。

查看ARP缓存表:

Linux指令:arp -a

补充:

ARP的过程不是只在一个局域网内发生的, 而是在每一个局域网中发生,也可以在路由的路上进行ARP。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/106413.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ARM,汇编指令

一、汇编指令 1、搬移指令 mov r0 ,#3 mov r1,r0 msr cpsr,r0 mrs r0,cpsr 2、条件执行及标志位 cmp moveq movgt 3、机器码 1)、立即数合法性 2)、立即数不合法 ldr r0,0x12345678 伪指令解决不合法的问题 前4位表示16个数,一个数移动2次。 …

C# Socket通信从入门到精通(4)——多个异步TCP客户端C#代码实现

前言: 在之前的文章C# Socket通信从入门到精通(3)——单个异步TCP客户端C#代码实现我介绍了单个异步Tcp客户端的c#代码实现,但是有的时候,我们需要连接多个服务器,并且对于每个服务器,我们都有一些比如异步连接、异步发送、异步接收的操作,那么这时候我们使用之前单个…

代码随想录 | Day56

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 今日学习目标一、算法题1.最长公共子序列2.不相交的线3.最大子数组和 今日心得学习及参考书籍 今日学习目标 最长公共子序列(1143) 不相交的…

LVS集群-DR模式

概念: LVS-DR模式,也是最常用的lVS负载方式,DR DIRECT ROUTING 直接路由模式 负载均衡器lVS调度器,只负责请求和转发到后端的真实服务器,但是影响结果,由后端服务器直接转发给客户端,不需要经…

Chimera:混合的 RLWE-FHE 方案

参考文献: [HS14] S. Halevi and V. Shoup. Algorithms in HElib. In Advances in Cryptology–CRYPTO 2014, pages 554–571. Springer, 2014.[HS15] S. Halevi and V. Shoup. Bootstrapping for HElib. In Advances in Cryptology–EUROCRYPT 2015, pages 641–6…

【vue3 】 创建项目vscode 提示无法找到模块

使用命令创建 vue3 创建新应用 npm create vuelatest会看到一些可选功能的询问? √ 请输入项目名称: … vue-project √ 是否使用 TypeScript 语法? … 否 / 是 √ 是否启用 JSX 支持? … 否 / 是 √ 是否引入 Vue Router 进行单…

Jenkins CLI二次开发工具类

使用Jenkins CLI进行二次开发 使用背景 公司自研CI/DI平台,借助JenkinsSonarQube进行代码质量管理。对接版本 Jenkins版本为:Version 2.428 SonarQube版本为:Community EditionVersion 10.2.1 (build 78527)技术选型 Java对接Jenkins有第…

Python —— UI自动化用例前置处理日志封装

1、UI自动化用例增加前置 1、fixture(夹具)的使用 前置顾名思义是在执行测试用例之前做的一些事情,在自动化测试时会碰到用例执行前需要做一些前置操作,以及用例执行后需要做一些后置操作,比如登录、退出等&#xff…

Leetcode—80.删除有序数组中的重复项II【中等】

2023每日刷题&#xff08;十&#xff09; Leetcode—80.删除有序数组中的重复项II 双指针实现代码 int removeDuplicates(int* nums, int numsSize){int i 0;int j 1;int k 1;int tmp nums[i];while(j < numsSize) {if(nums[j] tmp && k < 2) {nums[i] n…

YOLOv5— Fruit Detection

&#x1f368; 本文为[&#x1f517;365天深度学习训练营学习记录博客 &#x1f366; 参考文章&#xff1a;365天深度学习训练营-第7周&#xff1a;咖啡豆识别&#xff08;训练营内部成员可读&#xff09; &#x1f356; 原作者&#xff1a;[K同学啊 | 接辅导、项目定制](https…

P1868 饥饿的奶牛

根据题意可以知道是一个动态规划&#xff0c;看完数据范围之后可以知道是一个线性DP。 解决方法有点类似于背包问题&#xff0c;枚举背包的每一个空间。 如果把坐标轴上每个点都看成一个块儿&#xff0c;只需要按顺序求出前 i 个块儿的最大牧草堆数&#xff0c;f[i] 就是前i的…

【软考系统架构设计师】2023年系统架构师冲刺模拟习题之《软件工程》

在软考中软件工程模块主要包含以下考点&#xff1a; 文章目录 软件过程模型&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;逆向工程&#x1f31f;基于构件的软件工程&#x1f31f;&#x1f31f;软件开发与软件设计与维护净室软件工程软件模型软件需求 软件过程模型&am…

支持向量机(SVM)

一. 什么是SVM 1. 简介 SVM&#xff0c;曾经是一个特别火爆的概念。它的中文名&#xff1a;支持向量机&#xff08;Support Vector Machine, 简称SVM&#xff09;。因为它红极一时&#xff0c;所以关于它的资料特别多&#xff0c;而且杂乱。虽然如此&#xff0c;只要把握住SV…

Kotlin中使用ViewBinding绑定控件并添加点击事件

文章目录 效果1、加入依赖2、与控件进行绑定在 Activity 中使用视图绑定 3、监听控件 效果 实现源码 class MainActivity : AppCompatActivity() {lateinit var binding:ActivityMainBindingoverride fun onCreate(savedInstanceState: Bundle?) {super.onCreate(savedInstan…

C# 串口通信简单示例

C# 简单串口通信示例 串口通信示例代码 串口通信 C# 串口通信主要操作&#xff1a; 命名空间&#xff1a;using System.IO.Ports;获取端口&#xff1a;string[] ports System.IO.Ports.SerialPort.GetPortNames();设置端口名&#xff1a;serialPort1.PortName “COM1”; //…

性能测试工具:如何学习JMeter?

JMeter是一个广泛应用于Web应用程序性能测试与负载测试的开源负载测试工具&#xff0c;学习JMeter则可以协助软件测试工程师更好地进行自动化性能测试与负载测试&#xff0c;本文就来介绍下如何学习JMeter。 1. 应用场景 (1) Web应用程序、数据库服务器、FTP服务器、SOAP和RE…

Makefile 基础教程:从零开始学习

在软件开发过程中&#xff0c;Makefile是一个非常重要的工具&#xff0c;它可以帮助我们自动构建程序&#xff0c;管理程序依赖关系&#xff0c;提高开发效率。本篇博客将从基础开始&#xff0c;介绍Makefile的相关知识&#xff0c;帮助大家快速掌握Makefile的使用方法 Makefil…

springboot异步线程池

项目中经常会遇到线程池异步处理一些任务 1.配置信息 # 异步线程配置 # 核心线程数 async:executor:thread:core_pool_size: 10# 最大线程数max_pool_size: 100# 任务队列大小queue_capacity: 20# 线程池中线程的名称前缀name:prefix: kc-async-service-# 缓冲队列中线程的空闲…

0基础学习PyFlink——用户自定义函数之UDTF

大纲 表值函数完整代码 在《0基础学习PyFlink——用户自定义函数之UDF》中&#xff0c;我们讲解了UDF。本节我们将讲解表值函数——UDTF 表值函数 我们对比下UDF和UDTF def udf(f: Union[Callable, ScalarFunction, Type] None,input_types: Union[List[DataType], DataTy…