Problem - E - Codeforces
题意:
思路:
感觉是个套路题
对区间计数,按照CF惯用套路,枚举其中一个端点,对另一个端点计数
对于这道题,枚举右端点,对左端点计数
Code:
#include <bits/stdc++.h>
#define int long long
using i64 = long long;
constexpr int N = 1e6 + 10;
constexpr int M = 1e6 + 10;
constexpr int P = 2600;
constexpr i64 Inf = 1e18;
constexpr int mod = 1e9 + 7;
constexpr double eps = 1e-6;
struct Segtree {
int val, lazy;
}tr[N << 2];
int n;
int a[N];
int lmi[N], lmx[N];
void pushup(int rt) {
tr[rt].val = tr[rt << 1].val + tr[rt << 1 | 1].val;
}
void build(int rt, int l, int r) {
if (l == r) {
tr[rt].val = 0;
tr[rt].lazy = -1;
return;
}
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
pushup(rt);
}
void pushdown(int rt, int tot) {
tr[rt << 1].lazy = tr[rt].lazy;
tr[rt << 1 | 1].lazy = tr[rt].lazy;
tr[rt << 1].val = (tot - tot / 2) * (tr[rt].lazy? 1 : 0);
tr[rt << 1 | 1].val = (tot / 2) * (tr[rt].lazy? 1 : 0);
tr[rt].lazy = -1;
}
void modify(int rt, int l, int r, int x, int y, int k) {
if (x <= l && r <= y) {
tr[rt].lazy = k;
tr[rt].val = k * (r - l + 1);
return;
}
if (tr[rt].lazy != -1) pushdown(rt, r - l + 1);
int mid = l + r >> 1;
if (x <= mid) modify(rt << 1, l, mid, x, y, k);
if (y > mid) modify(rt << 1 | 1, mid + 1, r, x, y, k);
pushup(rt);
}
void solve() {
std::cin >> n;
for (int i = 1; i <= n; i ++) {
std::cin >> a[i];
}
std::stack<int> S, S2;
for (int i = 1; i <= n; i ++) {
while(!S.empty() && a[S.top()] >= a[i]) S.pop();
lmi[i] = S.empty() ? 0 : S.top();
S.push(i);
}
for (int i = 1; i <= n; i ++) {
while(!S2.empty() && a[S2.top()] <= a[i]) S2.pop();
lmx[i] = S2.empty() ? 0 : S2.top();
S2.push(i);
}
build(1, 1, n);
int ans = 0;
for (int r = 1; r <= n; r ++) {
if (lmi[r] + 1 <= r - 1) modify(1, 1, n, lmi[r] + 1, r - 1, 0);
if (lmx[r] + 1 <= r - 1) modify(1, 1, n, lmx[r] + 1, r - 1, 1);
ans += tr[1].val;
}
std::cout << ans << "\n";
}
signed main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int t = 1;
while (t--) {
solve();
}
return 0;
}