基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成

本教程的演示都将在 Flink CDC CLI 中进行,无需一行 Java/Scala 代码,也无需安装 IDE。

 

这篇教程将展示如何基于 Flink CDC YAML 快速构建 MySQL 到 Kafka 的 Streaming ELT 作业,包含整库同步、表结构变更同步演示和关键参数介绍。

准备阶段

准备 Flink Standalone 集群

  1. 1. 下载 Flink 1.19.2[1]压缩包,解压后并跳转至 Flink 目录下,设置 FLINK_HOME 为 flink-1.19.2 所在目录。

tar -zxvf  flink-1.19.2-bin-scala_2.12.tgz
export FLINK_HOME=$(pwd)/flink-1.19.2
  1. 2. 在 conf/config.yaml 文件追加下列参数开启 checkpoint,每隔 3 秒做一次 checkpoint。

execution:
    checkpointing:
        interval: 3000
  1. 3. 使用下面的命令启动 Flink 集群。

./bin/start-cluster.sh

启动成功后可以在 http://localhost:8081/访问到 Flink Web UI,如下图所示:

图片

重复执行 start-cluster.sh 可以拉起多个 TaskManager

注意:如果是在云服务器上运行,需要将 conf/config.yaml 里面 rest.bind-address 和 rest.address 的 localhost 改成0.0.0.0,然后使用 公网IP:8081 即可访问。

准备 Docker 环境

使用下面的内容新建一个 docker-compose.yml 文件:

services:
   Zookeeper:
  image: zookeeper:3.7.1
  ports:
    - "2181:2181"
  environment:
    - ALLOW_ANONYMOUS_LOGIN=yes
   Kafka:
  image: bitnami/kafka:2.8.1
  ports:
    - "9092:9092"
    - "9093:9093"
  environment:
    - ALLOW_PLAINTEXT_LISTENER=yes
    - KAFKA_LISTENERS=PLAINTEXT://:9092
    - KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.67.2:9092
    - KAFKA_ZOOKEEPER_CONNECT=192.168.67.2:2181
   MySQL:
  image: debezium/example-mysql:1.1
  ports:
    - "3306:3306"
  environment:
    - MYSQL_ROOT_PASSWORD=123456
    - MYSQL_USER=mysqluser
    - MYSQL_PASSWORD=mysqlpw

注意:文件里面的 192.168.67.2 为内网 IP,可通过 ifconfig 查找。

该 Docker Compose 中包含的组件有:
● MySQL: 包含商品信息的数据库app_db
● Kafka: 存储从 MySQL 中根据规则映射过来的结果表
● Zookeeper:主要用于进行Kafka集群管理和协调
在 docker-compose.yml 所在目录下执行下面的命令来启动上述组件:

docker-compose up -d

该命令以 detached 模式启动 Docker Compose 配置中定义的所有组件。可以通过 docker ps 来观察上述的组件是否正常启动。

图片

在 MySQL 数据库中准备数据

通过执行如下命令可以进入 MySQL 容器:

docker-compose exec MySQL mysql -uroot -p123456

创建数据库 app_db和表 orders,products,shipments 并插入数据:

-- 创建数据库
 CREATE DATABASE app_db;
   
 USE app_db;
   
 -- 创建 orders 表
 CREATE TABLE `orders` (
 `id` INT NOT NULL,
 `price` DECIMAL(10,2) NOT NULL,
 PRIMARY KEY (`id`)
 );

 -- 插入数据
 INSERT INTO `orders` (`id`, `price`) VALUES (1, 4.00);
 INSERT INTO `orders` (`id`, `price`) VALUES (2, 100.00);

 -- 创建 shipments 表
 CREATE TABLE `shipments` (
 `id` INT NOT NULL,
 `city` VARCHAR(255) NOT NULL,
 PRIMARY KEY (`id`)
 );

 -- 插入数据
 INSERT INTO `shipments` (`id`, `city`) VALUES (1, 'beijing');
 INSERT INTO `shipments` (`id`, `city`) VALUES (2, 'xian');

 -- 创建 products 表
 CREATE TABLE `products` (
 `id` INT NOT NULL,
 `product` VARCHAR(255) NOT NULL,
 PRIMARY KEY (`id`)
 );

 -- 插入数据
 INSERT INTO `products` (`id`, `product`) VALUES (1, 'Beer');
 INSERT INTO `products` (`id`, `product`) VALUES (2, 'Cap');
 INSERT INTO `products` (`id`, `product`) VALUES (3, 'Peanut');

通过 Flink CDC CLI 提交任务

  1. 1. 下载压缩包并解压得到目录 flink-cdc-3.3.0;
    flink-cdc-3.3.0-bin.tar.gz[2]中包含 bin、lib、log、conf 四个目录。

  2. 2. 下载下面列出的 connector 包,并且移动到 lib 目录下:
    ■ MySQL pipeline connector 3.3.0[3]
    ■ Kafka pipeline connector 3.3.0[4]

您还需要将下面的 Driver 包放在 Flink lib 目录下,或通过 --jar 参数将其传入 Flink CDC CLI,因为 CDC Connectors 不再打包这个依赖:
■ MySQL Connector Java[5]
3. 编写任务配置 yaml 文件
下面给出了一个整库同步的示例文件 mysql-to-kafka.yaml:

################################################################################
# Description: Sync MySQL all tables to Kafka
################################################################################
source:
  type: mysql
  hostname: 0.0.0.0
  port: 3306
  username: root
  password: 123456
  tables: app_db.\.*
  server-id: 5400-5404
  server-time-zone: UTC

sink:
  type: kafka
  name: Kafka Sink
  properties.bootstrap.servers: 0.0.0.0:9092
  topic: yaml-mysql-kafka

pipeline:
  name: MySQL to Kafka Pipeline
  parallelism: 1

其中 source 中的 tables: app_db..* 通过正则匹配同步 app_db 下的所有表。
4. 最后,通过命令行提交任务到 Flink Standalone cluster

bash bin/flink-cdc.sh mysql-to-kafka.yaml
# 参考,一些自定义路径的示例  主要用于多版本flink,mysql驱动不一致等情况 如,
# bash /root/flink-cdc-3.3.0/bin/flink-cdc.sh /root/flink-cdc-3.3.0/bin/mysql-to-kafka.yaml --flink-home /root/flink-1.19. --jar /root/flink-cdc-3.3.0/lib/mysql-connector-java-8.0.27.jar

提交成功后,返回信息如:

Pipeline has been submitted to cluster.
Job ID: ba2afd0697524bd4857183936507b0bf
Job Description: MySQL to Kafka Pipeline

在 Flink Web UI,可以看到名为 MySQL to Kafka Pipeline 的任务正在运行。

通过 Kafka 客户端查看 Topic 数据,可得到debezium-json格式的内容:

docker-compose exec Kafka kafka-console-consumer.sh --bootstrap-server 192.168.31.229:9092 --topic yaml-mysql-kafka --from-beginning

debezium-json 格式包含了 before/after/op/source 几个元素,示例如下:

{
    "before": null,
    "after": {
        "id": 1,
        "price": 4
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "orders"
    }
}
...
{
    "before": null,
    "after": {
        "id": 1,
        "product": "Beer"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "products"
    }
}
...
{
    "before": null,
    "after": {
        "id": 2,
        "city": "xian"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "shipments"
    }
}

同步变更

进入 MySQL 容器:

docker-compose exec MySQL mysql -uroot -p123456

接下来,修改 MySQL 数据库中表的数据,StarRocks 中显示的订单数据也将实时更新:

  1. 1. 在 MySQL 的 orders 表中插入一条数据

INSERT INTO app_db.orders (id, price) VALUES (3, 100.00);
  1. 2. 在 MySQL 的 orders 表中增加一个字段

ALTER TABLE app_db.orders ADD amount varchar(100) NULL;
  1. 3. 在 MySQL 的 orders 表中更新一条数据

UPDATE app_db.orders SET price=100.00, amount=100.00 WHERE id=1;
  1. 4. 在 MySQL 的 orders 表中删除一条数据

DELETE FROM app_db.orders WHERE id=2;

通过 Kafka 消费者监控 Topic,可以看到 Kafka 上也在实时接收到这些变更:

{
    "before": {
        "id": 1,
        "price": 4,
        "amount": null
    },
    "after": {
        "id": 1,
        "price": 100,
        "amount": "100.00"
    },
    "op": "u",
    "source": {
        "db": "app_db",
        "table": "orders"
    }
}

同样地,去修改 shipments, products 表,也能在 Kafka对应的 Topic 中实时看到同步变更的结果。

特色功能

路由变更

Flink CDC 提供了将源表的表结构/数据路由到其他表名的配置,借助这种能力,我们能够实现表名库名替换,整库同步等功能。下面提供一个配置文件说明:

################################################################################
# Description: Sync MySQL all tables to Kafka
################################################################################
source:
  type: mysql
  hostname: 0.0.0.0
  port: 3306
  username: root
  password: 123456
  tables: app_db.\.*
  server-id: 5400-5404
  server-time-zone: UTC

sink:
  type: kafka
  name: Kafka Sink
  properties.bootstrap.servers: 0.0.0.0:9092
pipeline:
  name: MySQL to Kafka Pipeline
  parallelism: 1
route:
 - source-table: app_db.orders
   sink-table: kafka_ods_orders
 - source-table: app_db.shipments
   sink-table: kafka_ods_shipments
 - source-table: app_db.products
   sink-table: kafka_ods_products

通过上面的 route 配置,会将 app_db.orders 表的结构和数据同步到 kafka_ods_orders 中。从而实现数据库迁移的功能。特别地,source-table 支持正则表达式匹配多表,从而实现分库分表同步的功能,例如下面的配置:

route:
  - source-table: app_db.order\.*
    sink-table: kafka_ods_orders

这样,就可以将诸如 app_db.order01、app_db.order02、app_db.order03 的表汇总到 kafka_ods_orders 中。利用 Kafka 自带的工具,可查看对应 Topic 的建立,详情可使用 kafka-console-consumer.sh 进行查询。

docker-compose exec Kafka kafka-topics.sh --bootstrap-server 192.168.67.2:9092 --list

Kafka 中新建的 Topic 信息如下:

__consumer_offsets
kafka_ods_orders
kafka_ods_products
kafka_ods_shipments
yaml-mysql-kafka

选取 kafka_ods_orders 这个 Topic 进行查询,返回数据示例如下:

{
    "before": null,
    "after": {
        "id": 1,
        "price": 100,
        "amount": "100.00"
    },
    "op": "c",
    "source": {
        "db": null,
        "table": "kafka_ods_orders"
    }
}

写入多个分区

使用 partition.strategy 参数可以定义发送数据到 Kafka 分区的策略, 可以设置的选项有:
● all-to-zero(将所有数据发送到 0 号分区),默认值
● hash-by-key(所有数据根据主键的哈希值分发)
我们基于 mysql-to-kafka.yaml 在sink下增加一行配置: partition.strategy: hash-by-key

source:
  ...
sink:
  ...
  topic: yaml-mysql-kafka-hash-by-key
  partition.strategy: hash-by-key
pipeline:
  ...

同时我们利用 Kafka 的脚本新建一个 12 分区的 Kafka Topic:

docker-compose exec Kafka kafka-topics.sh --create --topic yaml-mysql-kafka-hash-by-key --bootstrap-server 192.168.67.2:9092  --partitions 12

提交 YAML 作业后,查看一下各个分区里面所存储的数据。

docker-compose exec Kafka kafka-console-consumer.sh --bootstrap-server=192.168.67.2:9092  --topic yaml-mysql-kafka-hash-by-key  --partition 0  --from-beginning

部分分区数据详情如下:

  • • 分区0

{
    "before": null,
    "after": {
        "id": 1,
        "price": 100,
        "amount": "100.00"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "orders"
    }
}
  • • 分区4

{
    "before": null,
    "after": {
        "id": 2,
        "product": "Cap"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "products"
    }
}
{
    "before": null,
    "after": {
        "id": 1,
        "city": "beijing"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "shipments"
    }
}

输出格式

value.format 参数用于序列化 Kafka 消息的值部分数据的格式。可选的填写值包括 debezium-json和 canal-json,默认值为 debezium-json,目前还不支持用户自定义输出格式。
debezium-json  [6]格式会包含 before(变更前的数据)/after(变更后的数据)/op(变更类型)/source(元数据) 几个元素,ts_ms 字段并不会默认包含在输出结构中(需要在 Source 中指定 metadata.list 配合)。canal-json  [7]格式会包含 old/data/type/database/table/pkNames 几个元素,但是 ts 并不会默认包含在其中(原因同上)。
可以在 YAML 文件的 sink 中定义 value.format: canal-json 来指定输出格式为 canal-json 类型:

source:
  ...

sink:
  ...
  topic: yaml-mysql-kafka-canal
  value.format: canal-json
pipeline:
  ...
查询对应 topic 的数据,返回示例如下:
{
    "old": null,
    "data": [
        {
            "id": 1,
            "price": 100,
            "amount": "100.00"
        }
    ],
    "type": "INSERT",
    "database": "app_db",
    "table": "orders",
    "pkNames": [
        "id"
    ]
}

自定义上下游映射关系

使用 sink.tableId-to-topic.mapping 参数可以指定上游表名到下游 Kafka Topic 名的映射关系。无需使用 route 配置。与之前介绍的通过 route 实现的不同点在于,配置该参数可以在保留源表的表名信息的情况下设置写入的 Topic 名称。
在前面的 YAML 文件中增加 sink.tableId-to-topic.mapping 配置指定映射关系,每个映射关系由 ; 分割,上游表的 TableId 和下游 Kafka 的 Topic 名由 : 分割:

source:
  ...

sink:
  ...
  sink.tableId-to-topic.mapping: app_db.orders:yaml-mysql-kafka-orders;app_db.shipments:yaml-mysql-kafka-shipments;app_db.products:yaml-mysql-kafka-products
pipeline:
  ...

运行后,Kafka 中将会生成如下的 Topic:

...
yaml-mysql-kafka-orders
yaml-mysql-kafka-products
yaml-mysql-kafka-shipments

上述 3 个 Topic 中的部分数据详情:

{
    "before": null,
    "after": {
        "id": 1,
        "price": 100,
        "amount": "100.00"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "orders"
    }
}
{
    "before": null,
    "after": {
        "id": 2,
        "product": "Cap"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "products"
    }
}
{
    "before": null,
    "after": {
        "id": 2,
        "city": "xian"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "shipments"
    }
}

环境清理

本教程结束后,在 docker-compose.yml 文件所在的目录下执行如下命令停止所有容器:

docker-compose down

在 Flink 所在目录 flink-1.19.2 下执行如下命令停止 Flink 集群:

./bin/stop-cluster.sh

参考资料

[1]

Flink 1.19.2: https://archive.apache.org/dist/flink/flink-1.19.2/flink-1.19.2-bin-scala_2.12.tgz

[2]

flink-cdc-3.3.0-bin.tar.gz: https://www.apache.org/dyn/closer.lua/flink/flink-cdc-3.3.0/flink-cdc-3.3.0-bin.tar.gz

[3]

MySQL pipeline connector 3.3.0: https://repo1.maven.org/maven2/org/apache/flink/flink-cdc-pipeline-connector-mysql/3.3.0/flink-cdc-pipeline-connector-mysql-3.3.0.jar

[4]

Kafka pipeline connector 3.3.0: https://repo1.maven.org/maven2/org/apache/flink/flink-cdc-pipeline-connector-kafka/3.3.0/flink-cdc-pipeline-connector-kafka-3.3.0.jar

[5]

MySQL Connector Java: https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.27/mysql-connector-java-8.0.27.jar

[6]

debezium-json: https://debezium.io/documentation/reference/stable/integrations/serdes.html

[7]

canal-json: https://github.com/alibaba/canal/wiki


基于 Flink CDC 打造企业级实时数据同步方案


相比于传统数据集成流水线,Flink CDC 提供了全量和增量一体化同步的解决方案。对于一个同步任务,只需使用一个 Flink 作业即可将上游的全量数据和增量数据一致地同步到下游系统。此外, Flink CDC 使用了增量快照算法,无需任何额外配置即可实现全量和增量数据的无缝切换。

现推出“Flink CDC 挑战任务”参与挑战不仅可快速体验《基于 Flink CDC 打造企业级实时数据同步方案》,限时上传任务截图还可获得精美礼品。

 点击即可跳转:Flink CDC 挑战任务

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/980625.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Maven】基于IDEA进行Maven工程的创建、构建

文章目录 一、基于IDEA创建Maven工程1. 概念梳理Maven工程的GAVP2. Idea构建Maven Java SE工程3. Idea构建Maven Java Web工程3.1 创建一个maven的javase工程3.2 修改pom.xml文件打包方式3.3 设置web资源路径和web.xml路径 4. Maven工程项目结构说明 二、基于IDEA进行Maven工程…

计算机毕业设计SpringBoot+Vue.js在线课程管理系统(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

【爬虫基础】第二部分 爬虫基础理论 P3/3

上节内容回顾:【爬虫基础】第一部分 网络通讯 P1/3-CSDN博客 【爬虫基础】第一部分 网络通讯-Socket套接字 P2/3-CSDN博客 【爬虫基础】第一部分 网络通讯-编程 P3/3-CSDN博客 【爬虫基础】第二部分 爬虫基础理论 P1/3-CSDN博客 【爬虫基础】第二部分 爬虫基础理论…

【子网掩码计算器:Python + Tkinter 实现】

子网掩码计算器:Python Tkinter 实现 引言代码功能概述代码实现思路1. 界面设计2. 功能实现3. 事件处理 子网掩码计算器实现步骤1. 导入必要的库2. 定义主窗口类 SubnetCalculatorApp3. 创建菜单栏4. 创建界面组件5. 判断 IP 地址类别6. 计算子网信息7. 其他功能函…

【第十节】C++设计模式(结构型模式)-Flyweight( 享元)模式

目录 一、问题背景 二、模式选择 三、代码实现 四、总结讨论 一、问题背景 享元模式(Flyweight Pattern)在对象存储优化中的应用 在面向对象系统的设计与实现中,创建对象是最常见的操作之一。然而,如果一个应用程序使用了过多…

macOS - 使用 tmux

文章目录 安装 tmux使用更多快捷键说明 安装 tmux brew install tmux使用 在终端输入 tmux 进入 tmux 界面,然后 输入 Control Option B 进入交互模式 输入 % 左右分栏," 上下分割 上一个窗格:{,下一个:} PS…

【洛谷贪心算法题】P1094纪念品分组

该题运用贪心算法,核心思想是在每次分组时,尽可能让价格较小和较大的纪念品组合在一起,以达到最少分组的目的。 【算法思路】 输入处理:首先读取纪念品的数量n和价格上限w,然后依次读取每件纪念品的价格,…

16. LangChain实战项目2——易速鲜花内部问答系统

需求简介 易束鲜花企业内部知识库如下: 本实战项目设计一个内部问答系统,基于这些内部知识,回答内部员工的提问。 在前面课程的基础上,需要安装的依赖包如下: pip install docx2txt pip install qdrant-client pip i…

Minio搭建并在SpringBoot中使用完成用户头像的上传

Minio使用搭建并上传用户头像到服务器操作,学习笔记 Minio介绍 minio官网 MinIO是一个开源的分布式对象存储服务器,支持S3协议并且可以在多节点上实现数据的高可用和容错。它采用Go语言开发,拥有轻量级、高性能、易部署等特点,并且可以自由…

Spring AI:让AI应用开发更简单

文章目录 引言什么是Spring AI?核心特性 Spring AI的核心组件ChatClient:聊天模型示例代码图示 ImageClient:图像生成示例代码图示 Prompt Templates:提示词模板示例代码 Spring AI的优势示例项目:智能机票助手代码实现…

【C】链式二叉树算法题1 -- 单值二叉树

leetcode链接https://leetcode.cn/problems/univalued-binary-tree/description/ 1 题目描述 如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树。只有给定的树是单值二叉树时,才返回 true;否则返回 false。 示例 1&#xff1…

什么是最终一致性,它对后端系统的意义是什么

最终一致性(Eventual Consistency)是分布式系统中的一种一致性模型。与传统的强一致性模型不同,最终一致性并不要求系统在任何时刻都保持一致,而是保证在足够的时间后,所有节点的数据最终会达到一致的状态。换句话说,系统允许短时间内出现数据的不一致性,但最终会通过某…

掌握大模型高效任务流搭建(一):构建LangChain任务流

前言: 在LangChain框架中,“链”占据着核心地位。它允许我们将众多任务模块串联起来,构建出富有弹性的任务流。借助这种链式结构,我们能够处理复杂的逻辑,并实现任务的自动化。在实际场景里,链式操作极大地…

目标检测——数据处理

1. Mosaic 数据增强 Mosaic 数据增强步骤: (1). 选择四个图像: 从数据集中随机选择四张图像。这四张图像是用来组合成一个新图像的基础。 (2) 确定拼接位置: 设计一个新的画布(输入size的2倍),在指定范围内找出一个随机点(如…

塑造网络安全的关键事件

注:本文为 “网络安全” 相关文章合辑。 机翻,未校。 Timeline of Cyber Security: Key Events that Shaped the Field 网络安全时间表:塑造该领域的关键事件 October 29, 2023 Cyberattacks are an everyday threat, always changing. T…

题解 | 牛客周赛82 Java ABCDEF

目录 题目地址 做题情况 A 题 B 题 C 题 D 题 E 题 F 题 牛客竞赛主页 题目地址 牛客竞赛_ACM/NOI/CSP/CCPC/ICPC算法编程高难度练习赛_牛客竞赛OJ 做题情况 A 题 判断字符串第一个字符和第三个字符是否相等 import java.io.*; import java.math.*; import java.u…

Redis 高可用性:如何让你的缓存一直在线,稳定运行?

🎯 引言:Redis的高可用性为啥这么重要? 在现代高可用系统中,Redis 是一款不可或缺的分布式缓存与数据库系统。无论是提升访问速度,还是实现数据的高效持久化,Redis 都能轻松搞定。可是,当你把 …

uniapp-原生android插件开发摘要

uni-app在App侧的原生扩展插件,支持使用java、object-c等原生语言编写,从HBuilderX 3.6起,新增支持了使用uts来开发原生插件。 基础项目 UniPlugin-Hello-AS工程请在App离线SDK中查找 基础项目(App离线SDK)已经配置好了自定义插件所需要的…

【定昌Linux系统】部署了java程序,设置开启启动

将代码上传到相应的目录,并且配置了一个.sh的启动脚本文件 文件内容: #!/bin/bash# 指定JAR文件的路径(如果JAR文件在当前目录,可以直接使用文件名) JAR_FILE"/usr/local/java/xs_luruan_client/lib/xs_luruan_…

SpringBoot源码解析(十):应用上下文AnnotationConfigServletWebServerApplicationContext构造方法

SpringBoot源码系列文章 SpringBoot源码解析(一):SpringApplication构造方法 SpringBoot源码解析(二):引导上下文DefaultBootstrapContext SpringBoot源码解析(三):启动开始阶段 SpringBoot源码解析(四):解析应用参数args Sp…