games101 作业5

题目

光线追踪的核心算法:
1.光线的生成
2.光线与三角的相交

题解

1.光线的生成
如课件中的图所示:
在这里插入图片描述
image plane 就是 代码中的scene的FrameBuffer。 但是,FrameBuffer 是窗口坐标系中,而光线是世界坐标系中的。所以我们需要将scene中的屏幕坐标 p o s s c r e e n pos_{screen} posscreen转换为世界坐标 p o s w o r l d pos_{world} posworld, 这个就可以按照作业3 坐标转换回顾 中,局部坐标到窗口坐标的变换,进行逆变换就可以了。
为了简化操作,观察点在原点,image plane ( 0 , 0 , − 1 ) (0,0,-1) (0,0,1)位置,如此,世界变换矩阵、观察矩阵都是单位矩阵。接下来只需要做投影变换、透视除法和视口变换的逆变换即可。由于z值已知,所以在推算的过程中可以不考虑z值。通过手动推算,可以得到以下公式:
x w o r l d = a s p e c t ∗ t a n ( f o v 2 ) ∗ ( 1 − 2 w ∗ x s c r e e n ) y w o r l d = t a n ( f o v 2 ) ∗ ( 1 − 2 w ∗ y s c r e e n ) x_{world}=aspect * tan(\frac{fov}{2})* (1 - \frac{2}{w} * x_{screen} ) \\ y_{world}=tan(\frac{fov}{2})* ( 1 - \frac{2}{w} * y_{screen} ) xworld=aspecttan(2fov)(1w2xscreen)yworld=tan(2fov)(1w2yscreen)
x w o r l d x_{world} xworld 为世界坐标, x s c r e e n x_{screen} xscreen 为屏幕坐标,注意最后需要根据左右手和 窗口坐标系和屏幕坐标系的y轴反向,加上相应的正负号。 最终,image plane 中的 每个像素的世界坐标减去观察点eye_pos(0,0,0) ,然后归一化,即可得到光线的方向。

具体的代码如下:

 std::vector<Vector3f> framebuffer(scene.width * scene.height);

 float scale = std::tan(deg2rad(scene.fov * 0.5f));
 float imageAspectRatio = scene.width / (float)scene.height;

 // Use this variable as the eye position to start your rays.
 Vector3f eye_pos(0);
 int m = 0;
 for (int j = 0; j < scene.height; ++j)
 {
     for (int i = 0; i < scene.width; ++i)
     {
         // generate primary ray direction
         float x=0;
         float y=0;
         // TODO: Find the x and y positions of the current pixel to get the direction
         // vector that passes through it.
         // Also, don't forget to multiply both of them with the variable *scale*, and
         // x (horizontal) variable with the *imageAspectRatio*            

         // 将屏幕坐标转换为NDC坐标
         // 然后将NDC坐标转换为世界坐标
         x = (2 * (i + 0.5) / (float)scene.width - 1) * scale * imageAspectRatio;
         y = (1 - 2 * (j + 0.5) / (float)scene.height) * scale;

         Vector3f dir = Vector3f(x, y, -1); // Don't forget to normalize this direction!
         dir = normalize(dir);
         framebuffer[m++] = castRay(eye_pos, dir, scene, 0);
     }
     UpdateProgress(j / (float)scene.height);
 }
  1. 光线和三角形相交
    课程中介绍了两种方式,第一种,比较好理解,就是先判断射线是否和平面相交,如果相交,在判断交点是否在三角形内部。
    如ppt 中所示:
    在这里插入图片描述

第二种方式,Moller Trubmber 算法,这种方式可以一次计算出 t以及交点在重心坐标系中的坐标值。Moller Trubmber 算法的推导可以参考文档
在这里插入图片描述

根据公式,实现的代码如下:

bool rayTriangleIntersect(const Vector3f& v0, const Vector3f& v1, const Vector3f& v2, const Vector3f& orig,
                          const Vector3f& dir, float& tnear, float& u, float& v)
{
    // TODO: Implement this function that tests whether the triangle
    // that's specified bt v0, v1 and v2 intersects with the ray (whose
    // origin is *orig* and direction is *dir*)
    // Also don't forget to update tnear, u and v.
    // reference: moller trubmbore algorithm
    Vector3f v0v1 = v1 - v0;
    Vector3f v0v2 = v2 - v0;
    Vector3f pvec = crossProduct(dir, v0v2);
    float det = dotProduct(v0v1, pvec);

    if (fabs(det) < 1e-8) return false;

    float invDet = 1 / det;

    Vector3f tvec = orig - v0;
    u = dotProduct(tvec, pvec) * invDet;
    if (u < 0 || u > 1) return false;

    Vector3f qvec = crossProduct(tvec, v0v1);
    v = dotProduct(dir, qvec) * invDet;
    if (v < 0 || u + v > 1) return false;

    tnear = dotProduct(v0v2, qvec) * invDet;

    return tnear > 0;
}

结果

在这里插入图片描述

作业答案

本次作业的答案放在的git仓库中:作业地址

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/979656.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

正交投影与内积空间:机器学习的几何基础

前言 本文隶属于专栏《机器学习数学通关指南》&#xff0c;该专栏为笔者原创&#xff0c;引用请注明来源&#xff0c;不足和错误之处请在评论区帮忙指出&#xff0c;谢谢&#xff01; 本专栏目录结构和参考文献请见《机器学习数学通关指南》 正文 &#x1f50d; 1. 内积空间的…

Cherry Studio + 火山引擎 构建个人AI智能知识库

&#x1f349;在信息化时代&#xff0c;个人知识库的构建对于提高工作效率、知识管理和信息提取尤为重要。尤其是当这些知识库能结合人工智能来智能化地整理、分类和管理数据时&#xff0c;效果更为显著。我最近尝试通过 Cherry Studio 和 火山引擎 来搭建个人智能知识库&#…

深入浅出数据结构(图)

图 图的逻辑结构定义逻辑结构基本术语&#xff08;提起来脑海有印象就行&#xff09;对比 存储结构&#xff08;邻接矩阵和邻接表&#xff09;铺垫 邻接矩阵透过问题看本质无向图相关有向图相关网图相关 伪代码实现类&#xff08;无向图&#xff09;构造函数&#xff08;伪代码…

Android Activity启动流程详解

目录 Activity 启动流程详细解析 1. 应用层发起启动请求 1.1 调用 startActivity() 1.2 通过 Instrumentation 转发请求 2. 系统服务处理&#xff08;AMS 阶段&#xff09; 2.1 Binder IPC 通信 2.2 AMS 处理流程 2.3 跨进程回调 ApplicationThread 3. 目标进程初始化…

338.比特位计数<动态规划>

338. 比特位计数 - 力扣&#xff08;LeetCode&#xff09; class Solution { public:vector<int> countBits(int n) {//将所有数初始化为0vector<int>dp(n1,0);for(int i 0; i<n;i){if(i % 2 0){dp[i] dp[i/2];}else{dp[i] dp[i/2]1;}}return dp;} };

word转换为pdf后图片失真解决办法、高质量PDF转换方法

1、安装Adobe Acrobat Pro DC 自行安装 2、配置Acrobat PDFMaker &#xff08;1&#xff09;点击word选项卡上的Acrobat插件&#xff0c;&#xff08;2&#xff09;点击“首选项”按钮&#xff0c;&#xff08;3&#xff09;点击“高级配置”按钮&#xff08;4&#xff09;点…

C++ primer plus 第四节 复合类型

本章内容包括: • 创建和使用数组 • 创建和使用 c-风格字符串 • 创建和使用 string 类字符串 • 使用方法getline( )和 get( )读取字符串 • 混合输入字符串和数字 • 创建和使用结构 • 创建和使用共用休 • 创建和使用枚举 • 创建和使用指针 • 使用 new和delete 管理动态…

热点创意大师智能体

热点创意大师&#xff1a;自媒体创作者的灵感引擎 文心智能体平台AgentBuilder | 想象即现实 文心智能体平台AgentBuilder&#xff0c;是百度推出的基于文心大模型的智能体平台&#xff0c;支持广大开发者根据自身行业领域、应用场景&#xff0c;选取不同类型的开发方式&#…

数据集笔记:新加坡 一些交通的时间序列统计量

1 机动车年度保有量 data.gov.sg 各类机动车年度保有量 数据范围&#xff1a;2005年1月 - 2020年12月 1.1 数据说明 非高峰时段车辆 包括周末车&#xff08;Weekend Cars&#xff09;和 修订版非高峰时段车辆&#xff08;Revised Off Peak Cars&#xff09;&#xff0c;该…

Nginx 代理配置导致浏览器应用网页页面加载失败的分析与解决

Nginx 代理配置导致应用页面加载失败的分析与解决 前期部署信息&#xff1a; 部署DM数据库DEM时&#xff0c;配置了nginx代理&#xff0c;conf配置内容如下&#xff1a; charset utf-8;client_max_body_size 128M;listen 4567;server_name 192.168.1.156;root /opt/h5/;index…

交通安全知识竞赛主持稿串词

各位领导、在场的所有职工同志们&#xff0c;大家下午好! 行政房管部为了配合我厂开展的一系列安全生产宣传教育活动&#xff0c;普及安全知识&#xff0c;弘扬安全文化&#xff0c;结合本部门工作实际&#xff0c;今天在这里开展一项交通安全法律法规直至竞赛活动。 特意前来…

发展中的脑机接口:SSVEP特征提取技术

一、简介 脑机接口&#xff08;BCI&#xff09;是先进的系统&#xff0c;能够通过分析大脑信号与外部设备之间建立通信&#xff0c;帮助有障碍的人与环境互动。BCI通过分析大脑信号&#xff0c;提供了一种非侵入式、高效的方式&#xff0c;让人们与外部设备进行交流。BCI技术越…

Qt常用控件之旋钮QDial

旋钮QDial QDial 表示一个旋钮控件。 1. QDial属性 属性说明value当前数值。minimum最小值。maximum最大值。singleStep按下方向键时改变的步长。pageStep按下 pageUp/pageDown 的时候改变的步长。sliderPosition界面上旋钮显示的初始位置。tracking外观是否会跟踪数值变化&…

开源向量数据库Milvus简介

开源向量数据库Milvus简介 Milvus 是一个开源的、高性能、高扩展性的向量数据库&#xff0c;专门用于处理和检索高维向量数据。它适用于相似性搜索&#xff08;Approximate Nearest Neighbor Search&#xff0c;ANN&#xff09;&#xff0c;特别适合**AI、推荐系统、计算机视觉…

html+js 轮播图

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>轮播图示例</title><style>/* 基本样式…

ISP 常见流程

1.sensor输出&#xff1a;一般为raw-OBpedestal。加pedestal避免减OB出现负值&#xff0c;同时保证信号超过ADC最小电压阈值&#xff0c;使信号落在ADC正常工作范围。 2. pedestal correction&#xff1a;移除sensor加的基底&#xff0c;确保后续处理信号起点正确。 3. Linea…

BDF报告翻译简介后:关于A φ方法criterion引理1如何由范数导出内积

关于A φ方法criterion 引理1 如何由范数导出内积 在数学中&#xff0c;特别是在泛函分析中&#xff0c;给定一个范数&#xff0c;可以定义一个与之相关的内积。这个过程不是总是可能的&#xff0c;但当一个赋范向量空间是完备的且满足平行四边形恒等式时&#xff0c;可以导出…

FakeApp 技术浅析(二):生成对抗网络

生成对抗网络&#xff08;Generative Adversarial Networks&#xff0c;简称 GANs&#xff09;是 FakeApp 等深度伪造&#xff08;deepfake&#xff09;应用的核心技术。GANs 由 生成器&#xff08;Generator&#xff09; 和 判别器&#xff08;Discriminator&#xff09; 两个…

基于fast-whisper模型的语音识别工具的设计与实现

目录 摘 要 第1章 绪 论 1.1 论文研究主要内容 1.1.1模型类型选择 1.1.2开发语言的选择 1.2 国内外现状 第2章 关键技术介绍 2.1 关键性开发技术的介绍 2.1.1 Faster-Whisper数据模型 2.1.2 Django 第3章 系统分析 3.1 构架概述 3.1.1 功能构架 3.1.2 模块需求描述 3.2 系统开…

华为在不同发展时期的战略选择(节选)

华为在不同发展时期的战略选择&#xff08;节选&#xff09; 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 来源&#xff1a;谢宁专著《华为战略管理法&#xff1a;DSTE实战体系》。本文有节选修改。 导言 从目前所取得的成就往回看&#xff0c;华为…