Transformer技术报告:架构与原理

【深度学习】Transformer 技术报告:架构与原理

    • 一、引言
    • 二、Transformer 的基本架构
      • 2.1 总体架构
      • 2.2 编码器(Encoder)
      • 2.3 解码器(Decoder)
      • 2.4 输入嵌入与位置编码
    • 三、Transformer 的关键特性
    • 四、应用场景
    • 五、总结

一、引言

Transformer 是一种基于注意力机制(Attention Mechanism)的深度学习架构,最初由 Vaswani 等人在 2017 年的论文《Attention Is All You Need》中提出。它彻底改变了自然语言处理(NLP)领域,成为许多语言模型和任务的核心架构。Transformer 的设计理念是摒弃传统的循环神经网络(RNN)及其变体(如 LSTM 和 GRU),转而通过并行计算和注意力机制高效处理序列数据。

二、Transformer 的基本架构

2.1 总体架构

Transformer 采用编码器 - 解码器(Encoder-Decoder)架构,主要用于处理序列到序列的任务,如机器翻译、文本生成等。编码器负责将输入序列编码为上下文表示,解码器则基于这些上下文信息生成输出序列。整个架构由以下部分组成:

编码器(Encoder):由多个相同的层(通常为 6 层)堆叠而成,每层包含两个子层。

解码器(Decoder):同样由多个相同的层堆叠而成,每层包含三个子层。

输入嵌入与位置编码:为输入序列提供初始表示,并保留序列的顺序信息。

输出层:将解码器的输出转换为目标序列。

2.2 编码器(Encoder)

编码器由多个相同的层组成,每层包含两个子层:

多头自注意力层(Multi-Head Self-Attention Layer)

作用:允许模型在处理输入序列时,同时关注序列中的所有位置,捕捉词与词之间的关系。

机制:将输入序列分割成多个 “头”(Head),每个头独立计算注意力权重,然后将所有头的输出拼接起来。这种设计能够捕捉到输入序列中不同子空间的特征。

公式

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V

其中,Q、K、V 分别代表查询(Query)、键(Key)和值(Value), d k d_k dk是键向量的维度。

多头注意力:

MultiHead ( Q , K , V ) = Concat ( head 1 , … , head h ) W O \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O MultiHead(Q,K,V)=Concat(head1,,headh)WO

其中, head i = Attention ( Q W i Q , K W i K , V W i V ) \text{head}_i=\text{Attention}(QW_i^Q,KW_i^K,VW_i^V) headi=Attention(QWiQ,KWiK,VWiV),h 是头的数量。

前馈网络层(Feed Forward Network Layer)

作用:对多头自注意力层的输出进行进一步处理。

结构:一个简单的全连接网络,包含两个线性层和一个非线性激活函数(如 ReLU)。

公式

FFN ( x ) = max ⁡ ( 0 , x W 1 + b 1 ) W 2 + b 2 \text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2 FFN(x)=max(0,xW1+b1)W2+b2

残差连接与层归一化

残差连接:将每个子层的输入直接加到输出上,避免梯度消失问题。

层归一化:对每个子层的输出进行归一化处理,稳定训练过程。

2.3 解码器(Decoder)

解码器同样由多个相同的层组成,每层包含三个子层:

掩码多头自注意力层(Masked Multi-Head Self-Attention Layer)

作用:处理解码器的输入序列,防止解码器在生成过程中看到未来的信息(即 “掩码” 操作)。

机制:与编码器的多头自注意力层类似,但在计算注意力时,对当前词之后的词施加掩码(Mask),使其注意力权重为零。

公式

MaskedAttention ( Q , K , V ) = softmax ( Q K T d k + mask ) V \text{MaskedAttention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}} + \text{mask}\right)V MaskedAttention(Q,K,V)=softmax(dk QKT+mask)V

编码器 - 解码器注意力层(Encoder-Decoder Attention Layer)

作用:将解码器的输入与编码器的输出进行交互,获取上下文信息。

机制:解码器的查询(Query)与编码器的键(Key)和值(Value)进行注意力计算,从而将编码器的上下文信息融入解码器的输出。

前馈网络层

作用:与编码器中的前馈网络类似,进一步处理信息。

解码器的输出经过线性层和 softmax 函数,生成最终的预测结果。

2.4 输入嵌入与位置编码

输入嵌入(Input Embedding)

作用:将输入序列中的每个词转换为固定维度的向量表示。

机制:通过查找表(Lookup Table)将每个词映射到一个预训练的嵌入向量。

位置编码(Positional Encoding)

作用:为模型提供序列中每个词的位置信息,因为 Transformer 不依赖于序列的顺序。

机制:位置编码是一个固定长度的向量,与输入嵌入相加,为模型提供位置信息。

公式

PE ( p o s , 2 i ) = sin ⁡ ( pos 1000 0 2 i / d model ) \text{PE}(pos, 2i) = \sin\left(\frac{\text{pos}}{10000^{2i/d_{\text{model}}}}\right) PE(pos,2i)=sin(100002i/dmodelpos)

PE ( p o s , 2 i + 1 ) = cos ⁡ ( pos 1000 0 2 i / d model ) \text{PE}(pos, 2i+1) = \cos\left(\frac{\text{pos}}{10000^{2i/d_{\text{model}}}}\right) PE(pos,2i+1)=cos(100002i/dmodelpos)

其中,pos 是词的位置,i 是维度, d model d_{\text{model}} dmodel是模型的维度。

三、Transformer 的关键特性

并行化处理:与 RNN 不同,Transformer 可以并行处理整个序列,大大提高了训练效率。

长距离依赖建模:注意力机制允许模型直接捕捉序列中任意两个词之间的关系,解决了 RNN 在长序列中信息丢失的问题。

多头注意力机制:通过多个 “头” 从不同角度捕捉序列特征,增强了模型的表达能力。

残差连接与层归一化:提高了模型的训练稳定性,避免了深层网络中的梯度消失问题。

四、应用场景

Transformer 架构在自然语言处理领域取得了巨大成功,广泛应用于以下任务:

机器翻译:将一种语言的文本翻译成另一种语言。

文本生成:如聊天机器人、写作助手等。

文本分类:对文本进行情感分析、主题分类等。

问答系统:从文本中提取答案或生成回答。

语言模型:如 GPT、BERT 等预训练语言模型,基于 Transformer 架构开发。

五、总结

Transformer 架构凭借其高效的并行计算能力和强大的长距离依赖建模能力,彻底改变了自然语言处理领域。它不仅在学术研究中取得了显著成果,还在工业界得到了广泛应用。未来,Transformer 架构有望在更多领域发挥重要作用,推动人工智能技术的发展。

希望这份报告对你有帮助!如果你有任何问题或需要进一步补充 Transformer 在其他领域的应用实例、技术优化方向等内容,欢迎随时告诉我。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/972081.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu24.04无脑安装docker(含图例)

centos系统请看这篇 Linux安装Docker教程(详解) 一. ubuntu更换软件源 请看这篇:Ubuntu24.04更新国内源 二. docker安装 卸载老版docker(可忽略) sudo apt-get remove docker docker-engine docker.io containerd runc更新软件库 sudo a…

thingboard告警信息格式美化

原始报警json内容: { "severity": "CRITICAL","acknowledged": false,"cleared": false,"assigneeId": null,"startTs": 1739801102349,"endTs": 1739801102349,"ackTs": 0,&quo…

✨2.快速了解HTML5的标签类型

✨✨HTML5 的标签类型丰富多样&#xff0c;每种类型都有其独特的功能和用途&#xff0c;以下是一些常见的 HTML5 标签类型介绍&#xff1a; &#x1f98b;结构标签 &#x1faad;<html>&#xff1a;它是 HTML 文档的根标签&#xff0c;所有其他标签都包含在这个标签内&am…

day12_调度和可视化

文章目录 day12_调度和可视化一、任务调度1、开启进程2、登入UI界面3、配置租户4、创建项目5、创建工作流5.1 HiveSQL部署&#xff08;掌握&#xff09;5.2 SparkDSL部署&#xff08;掌握&#xff09;5.3 SparkSQL部署&#xff08;熟悉&#xff09;5.4 SeaTunnel部署&#xff0…

使用nvm管理node.js版本,方便vue2,vue3开发

在Vue项目开发过程中&#xff0c;我们常常会遇到同时维护Vue2和Vue3项目的情况。由于不同版本的Vue对Node.js 版本的要求有所差异&#xff0c;这就使得Node.js 版本管理成为了一个关键问题。NVM&#xff08;Node Version Manager&#xff09;作为一款强大的Node.js 版本管理工具…

Java8适配的markdown转换html工具(FlexMark)

坐标地址&#xff1a; <dependency><groupId>com.vladsch.flexmark</groupId><artifactId>flexmark-all</artifactId><version>0.60.0</version> </dependency> 工具类代码&#xff1a; import com.vladsch.flexmark.ext.tab…

Qt开发①Qt的概念+发展+优点+应用+使用

目录 1. Qt的概念和发展 1.1 Qt的概念 1.2 Qt 的发展史&#xff1a; 1.3 Qt 的版本 2. Qt 的优点和应用 2.1 Qt 的优点&#xff1a; 2.2 Qt 的应用场景 2.3 Qt 的应用案例 3. 搭建 Qt 开发环境 3.1 Qt 的开发工具 3.2 Qt SDK 的下载和安装 3.3 Qt 环境变量配置和使…

vscode插件开发

准备 安装开发依赖 npm install -g yo generator-code 安装后&#xff0c;运行命令 yo code 运行 打开项目&#xff0c; 点击 vscode 调式 按 F5 或点击调试运行按钮 会打开一个新窗口&#xff0c;在新窗口按快捷键 CtrlShiftP &#xff0c;搜索 Hello World 选择执行 右下角出…

自制简单的图片查看器(python)

图片格式&#xff1a;支持常见的图片格式&#xff08;JPG、PNG、BMP、GIF&#xff09;。 import os import tkinter as tk from tkinter import filedialog, messagebox from PIL import Image, ImageTkclass ImageViewer:def __init__(self, root):self.root rootself.root.…

嵌入式 lwip http server makefsdata

背景&#xff1a; 基于君正X2000 MCU Freertoslwip架构 实现HTTP server服务&#xff0c;MCU作为HTTP服务器通过网口进行数据包的传输&#xff0c;提供网页服务。其中设计到LWIP提供的工具makefsdata&#xff0c;常用于将文件或目录结构转换为适合嵌入到固件中的二进制格式。 …

架构设计系列(三):架构模式

一、概述 关于移动应用开发中常见的架构模式&#xff0c;这些模式是为了克服早期模式的局限性而引入。常见的 架构模式有&#xff1a; MVC, MVP, MVVM, MVVM-C, and VIPER 二、MVC, MVP, MVVM, MVVM-C, and VIPER架构模式 MVC、MVP、MVVM、MVVM-C 和 VIPER 是移动应用开发中…

CSS盒模

CSS盒模型就像一个快递包裹&#xff0c;网页上的每个元素都可以看成是这样一个包裹&#xff0c;它主要由以下几个部分组成&#xff1a; 内容&#xff08;content&#xff09;&#xff1a;就像包裹里真正装的东西&#xff0c;比如文字、图片等。在CSS里&#xff0c;可用width&a…

解决DeepSeek服务器繁忙的有效方法

全球42%的企业遭遇过AI工具服务器过载导致内容生产中断&#xff08;数据来源&#xff1a;Gartner 2025&#xff09;。当竞品在凌晨3点自动发布「智能家居安装指南」时&#xff0c;你的团队可能正因DeepSeek服务器繁忙错失「净水器保养教程」的流量黄金期⏳。147SEO智能调度系统…

Zookeeper 和 Redis 哪种更好?

目录 前言 &#xff1a; 什么是Zookeeper 和 Redis &#xff1f; 1. 核心定位与功能 2. 关键差异点 (1) 一致性模型 (2) 性能 (3) 数据容量 (4) 高可用性 3. 适用场景 使用 Zookeeper 的场景 使用 Redis 的场景 4. 替代方案 5. 如何选择&#xff1f; 6. 常见误区 7. 总结 前言…

动态规划从入坟走向入坑

目录 1.动态规划的含义 2.动态规划的解题步骤(动规五部曲) 3.动态规划的题型 4.相关思路 1.动规基础(由于我看的博主讲的动规很简单,所以这里就不讲了) 2.背包问题 1.二维dp数组01背包 1.dp[i][j] 表示从下标为[0-i]的物品里任意取&#xff0c;放进容量为j的背包&#xf…

Golang学习笔记_34——组合模式

Golang学习笔记_31——原型模式 Golang学习笔记_32——适配器模式 Golang学习笔记_33——桥接模式 文章目录 一、核心概念1. 定义2. 解决的问题3. 核心角色4. 类图 二、特点分析三、适用场景1. 文件系统2. 图形界面3. 组织架构 四、代码示例&#xff08;Go语言&#xff09;五、…

vue+elementplus创建初始化安装

项目创建初始化 D:\Tool\mysql\education_vue 这个路径下cmd 或打开vscode&#xff0c;把项目丢进code中打开 安装element plus Container 布局容器 | Element Plus npm install element-plus --save 把项目初始文件Homeview AboutView删了&#xff0c;Router index.js中删一…

SQL 优化工具使用之 explain 详解

一、导读 对于大部分开发人员来说&#xff0c;平常接触的无非就是增删改查这些基本操作&#xff0c;创建存储过程&#xff0c;视图等等都是 DBA 该干的活&#xff0c;但是想要把这些基本操作写的近乎完美也是一件难事。 而 explain 显示了 MySQL 如何使用索引来处理 select 语…

仿 Sora 之形,借物理模拟之技绘视频之彩

来自麻省理工学院、斯坦福大学、哥伦比亚大学以及康奈尔大学的研究人员携手开源了一款创新的3D交互视频模型——PhysDreamer&#xff08;以下简称“PD”&#xff09;。PD与OpenAI旗下的Sora相似&#xff0c;能够借助物理模拟技术来生成视频&#xff0c;这意味着PD所生成的视频蕴…

Python的顺序结构和循环结构

文章目录 一、条件语句&#xff08;1&#xff09;条件语句的定义&#xff08;2&#xff09;条件语句的语法&#xff08;a&#xff09;单分支 if&#xff08;b&#xff09;双分支 if-else&#xff08;c&#xff09;多分支 if-elif-elif-...-else &#xff08;3&#xff09;注意事…