仿 Sora 之形,借物理模拟之技绘视频之彩

        来自麻省理工学院、斯坦福大学、哥伦比亚大学以及康奈尔大学的研究人员携手开源了一款创新的3D交互视频模型——PhysDreamer(以下简称“PD”)。PD与OpenAI旗下的Sora相似,能够借助物理模拟技术来生成视频,这意味着PD所生成的视频蕴含着诸多物理世界的特性。

例如,用手去触摸一盆花后,花朵会左右摇摆直至缓慢停止。PD可以准确地捕捉到物体很多微妙的动态变化和复杂的交互细节,生成的视频也就更加精准、细腻。可以查看链接视频

https://live.csdn.net/v/464063 

PD主要通过视频生成模型学习到的动态先验知识,来评估静态3D对象的物理材质属性。在大量视频训练数据的帮助下,可捕捉到物体外观和动态之间的关系。

从而帮助PD推断出驱动物体动态行为的物理材质属性,即使在缺乏地面真实材质数据的情况下也没问题,这也体现了PD强大的物理模拟和评估能力。

视频生成模型作为PD的关键组成部分,通过深度学习海量视频数据中的场景外观与动力学关系,为后续的物理材质模拟以及交互式3D动力合成奠定了坚实的基础。该模型主要借助深度神经网络来构建视频帧之间的时空依赖关系,由编码器和解码器构成。其中,编码器的作用是将输入的视频帧转化为低维表示,从而精准捕捉图像中的核心特征。

解码器则将这些低维表示解码为逼真的视频帧。通过训练过程,视频生成模型能够学习到输入视频帧与目标视频帧之间的映射关系,从而实现逐帧的视频生成。主要流程分为以下四大块。

外观建模:主要用来学习物体的外观变化模式,通过观察大量的视频数据,使PD能够捕捉到物体的纹理、颜色、形状等特征,并将它们编码为低维表示。这些编码后的表示可以用于后续的物理材料特性估计和3D动力学合成。

动力学建模:通过观察物体在视频中的运动轨迹,模型能够捕捉到物体的速度、加速度以及其他动力学特征。

先验知识提取:通过分析编码后的表示和解码后的视频帧,模型能够提取出物体外观和动力学之间的关系,包括外部力对物体的影响、物体的弹性等特征,为后续的物理材质模拟提供重要基础。

物体响应预测

PD具备物体响应预测功能,能够依据输入的交互刺激,精准预测物体的反应。该模型将交互刺激与所学习到的外观及动力学模式相结合,从而生成物体在全新交互情境下的运动轨迹与形变状况。这使得PD所生成的视频能够根据用户的输入,呈现出静态3D物体在特定交互刺激下高度逼真的动态响应效果。

在现实世界里,物体的物理行为是由其材质属性所决定的,诸如刚度、弹性和质量等。而在虚拟环境中对这些属性进行模拟时,会借助“杨氏模量”来进行评估与调整。例如,较高的杨氏模量意味着材料更为坚硬,而较低的杨氏模量则表示材料较为柔软。

为了在虚拟环境中复现现实世界中的物理知识,PD采用了材质场表示法来实现对3D对象物理属性的逼真模拟。材质场是一种连续函数,能够为3D场景中的每一个点分配一个“杨氏模量”物理属性值。

物理材质场采用了隐式神经场来表示,这是一种可微分的模型,能够优化以匹配参考视频中的动态。这种表示方法不仅能够精确地捕捉物体的物理属性,还能够与物理模拟过程无缝集成。

例如,当用户在虚拟环境中挤压一朵虚拟花朵时,花朵的变形和回弹方式会非常接近真实世界的表现。

尤其是在缓慢运动表征方面,PD模型比DreamGaussian4D、PhysGaussian、Real Capture模型表现更好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/972049.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python的顺序结构和循环结构

文章目录 一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(c)多分支 if-elif-elif-...-else (3)注意事…

04 redis数据类型

文章目录 redis数据类型string类型hash类型list类型set类型zset类型 (sortedset)通用命令 redis数据类型 官方命令::http://www.redis.cn/commands.html Redis 中存储数据是通过 key-value 格式存储数据的,其中 val…

AutoGen:玩转多智能体团队协作 (Teams)

👉👉👉本人承接各类AI相关应用开发项目(包括但不限于大模型微调、RAG、AI智能体、NLP、机器学习算法、运筹优化算法、数据分析EDA等) !!!👉👉👉 有意愿请私信!!! AutoGen 的 AgentChat 模块为我们提供了强大…

Python PyCharm DeepSeek接入

Python PyCharm DeepSeek接入 创建API key 首先进入DeepSeek官网,https://www.deepseek.com/ 点击左侧“API Keys”,创建API key,输出名称为“AI” 点击“创建",将API key保存,复制在其它地方。 在PyCharm中下…

分享8款AI生成PPT的工具!含测评

随着人工智能技术的飞速进步,制作PPT变得愈发便捷,仅需输入主题指令,便能在瞬间获得一份完整的演示文稿。尤其在制作篇幅较长的PPT时,手动编写每一页内容并设计格式和排版,不仅效率低下,而且耗时耗力。 本…

50页PDF|数字化转型成熟度模型与评估(附下载)

一、前言 这份报告依据GBT 43439-2023标准,详细介绍了数字化转型的成熟度模型和评估方法。报告将成熟度分为五个等级,从一级的基础转型意识,到五级的基于数据的生态价值构建与创新,涵盖了组织、技术、数据、资源、数字化运营等多…

aistdio部署deepseek-r1纯教程

前言 笔者电脑未扩容,想玩玩本地化的deepseek,苦于👇久矣, 想到之前老师介绍的百度云平台飞桨AI Studio星河社区-人工智能学习与实训社区 于是就开始尝试部署终端版deepseek. 一、新建项目 1.打开飞桨网站,创建not…

实现动态翻转时钟效果的 HTML、CSS 和 JavaScript,附源码

实现动态翻转时钟效果的 HTML、CSS 和 JavaScript 在现代网页设计中,动画效果可以极大地增强用户体验。本文将介绍如何利用 HTML、CSS 和 JavaScript 创建一个动态翻转时钟的效果,模拟经典机械翻页时钟的视觉效果。我们将通过详细的步骤讲解如何实现时钟…

RagFlow+Ollama 构建RAG私有化知识库

RagFlowOllama 构建RAG私有化知识库 关于RAG一、什么是RAGFlow一、RAGFlow 安装配置测服已有服务: mysql、redis、elasticsearch 二、RAGFlow 配置 ollama:本地运行大型语言模型的工具软件。用户可以轻松下载、运行和管理各种开源 LLM。降低使用门槛&…

JavaScript(JS)

介绍 JavaScript(简称:JS)是一门跨平台、面向对象的脚本语言。是用来控制网页行为的,它能使网页可交互 JavaScript 和Java 是完全不同的语言,不论是概念还是设计。但是基础语法类似 JS引入方式 内部脚本:将JS代码定义在HTML页面中 JavaScript代码…

LLM 架构

LLM 分类 : 自编码模型 (encoder) : 代表模型 : BERT自回归模型 (decoder) : 代表模型 : GPT序列到序列模型 (encoder-decoder) : 代表模型 : T5 自编码模型 (AutoEncoder model , AE) 代表模型 : BERT (Bidirectional Encoder Representation from Transformers)特点 : Enc…

剑指 Offer II 023. 两个链表的第一个重合节点

comments: true edit_url: https://github.com/doocs/leetcode/edit/main/lcof2/%E5%89%91%E6%8C%87%20Offer%20II%20023.%20%E4%B8%A4%E4%B8%AA%E9%93%BE%E8%A1%A8%E7%9A%84%E7%AC%AC%E4%B8%80%E4%B8%AA%E9%87%8D%E5%90%88%E8%8A%82%E7%82%B9/README.md 剑指 Offer II 023. 两…

【git-hub项目:YOLOs-CPP】本地实现04:项目简化

项目跑通之后,我们常常还需要对我们没有用到的任何内容进行删除,以简化项目体积,也便于我们阅读和后续部署。如何实现呢?本篇博客教会大家实现! 项目一键下载【⬇️⬇️⬇️】: 精简后:【GitHub跑通项目:YOLOs-CPP】+【计算机视觉】+【YOLOv11模型】+【windows+Cpp+ONN…

R语言用逻辑回归贝叶斯层次对本垒打数据与心脏移植数据后验预测检验模拟推断及先验影响分析|附数据代码...

全文链接:https://tecdat.cn/?p40152 在统计学领域中,层次建模是一种极为强大且实用的工具。它能够巧妙地处理复杂的数据结构,通过分层的方式对数据进行建模。在贝叶斯统计的框架内,层次建模优势尽显,其可以有效地融合…

解锁机器学习核心算法 | 随机森林算法:机器学习的超强武器

一、引言 在机器学习的广阔领域中,算法的选择犹如为一场冒险挑选趁手的武器,至关重要。面对海量的数据和复杂的任务,合适的算法能够化繁为简,精准地挖掘出数据背后隐藏的模式与价值。机器学习领域有十大核心算法,而随…

网络工程师 (43)IP数据报

前言 IP数据报是互联网传输控制协议(Internet Protocol,IP)的数据报格式,由首部和数据两部分组成。 一、首部 IP数据报的首部是控制部分,包含了数据报传输和处理所需的各种信息。首部可以分为固定部分和可变部分。 固定…

部署k8s 集群1.26.0(containerd方式)

随着k8s版本逐步更新,在不支持docker环境的情况下,需要使用containerd方式作为容器引擎。为了更好的个人学习使用,需要重新部署一套1.26.0版本的k8s集群,并且使用containerd方式作为容器引擎,版本为1.6.33。在部署过程…

移动通信发展史

概念解释 第一代网络通信 1G 第二代网络通信 2G 第三代网络通信 3G 第四代网络通信 4G 4g网络有很高的速率和很低的延时——高到500M的上传和1G的下载 日常中的4G只是用到了4G技术 运营商 移动-从民企到国企 联通-南方教育口有人 电信 铁通:成立于 2000 年…

HarmonyOS进程通信及原理

大家好,我是学徒小z,最近在研究鸿蒙中一些偏底层原理的内容,今天分析进程通信给大家,请用餐😊 文章目录 进程间通信1. 通过公共事件(ohos.commonEventManager)公共事件的底层原理 2. IPC Kit能…

openCV中如何实现滤波

图像滤波用于去除噪声和图像平滑,OpenCV 提供了多种滤波器: 1.1. 均值滤波: import cv2# 读取图像 image cv2.imread("example.jpg")# 均值滤波 blurred_image cv2.blur(image, (5, 5)) # (5, 5) 是滤波核的大小 滤波核大小的…