LLM 架构

LLM 分类 :

  • 自编码模型 (encoder) : 代表模型 : BERT
  • 自回归模型 (decoder) : 代表模型 : GPT
  • 序列到序列模型 (encoder-decoder) : 代表模型 : T5

自编码模型 (AutoEncoder model , AE)

  • 代表模型 : BERT (Bidirectional Encoder Representation from Transformers)
  • 特点 : Encoder-Only
  • 基本原理 : 在输入中随机 MASK 掉一部分单词,根据上下文预测这个词
  • 应用场景 : 内容理解任务,如 : 自然语言理解 (NLU )中的分类任务 (情感分析、提取式问答等 )

自回归模型 (Autoregressive model , AR)

  • 代表模型 : GPT
  • 特点 : Decoder-Only
  • 基本原理 : 从左往右学习的模型,只能利用上文或 下文的信息
  • 应用场景 : 生成式任务,如 : 自然语言生成 (NLG )领域的任务 (摘要、翻译、抽象问答等 )

序列到序列模型 (Sequence to Sequence Model)

  • 代表模型 : T5
  • 特点 : 同时使用编码器和解码器
  • 基本原理 : 将每个 task 视作序列到序列的转换/ 生成
  • 应用场景 : 需要内容理解和生成的任务,如 : 机器翻译

发展图 :

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/972026.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

剑指 Offer II 023. 两个链表的第一个重合节点

comments: true edit_url: https://github.com/doocs/leetcode/edit/main/lcof2/%E5%89%91%E6%8C%87%20Offer%20II%20023.%20%E4%B8%A4%E4%B8%AA%E9%93%BE%E8%A1%A8%E7%9A%84%E7%AC%AC%E4%B8%80%E4%B8%AA%E9%87%8D%E5%90%88%E8%8A%82%E7%82%B9/README.md 剑指 Offer II 023. 两…

【git-hub项目:YOLOs-CPP】本地实现04:项目简化

项目跑通之后,我们常常还需要对我们没有用到的任何内容进行删除,以简化项目体积,也便于我们阅读和后续部署。如何实现呢?本篇博客教会大家实现! 项目一键下载【⬇️⬇️⬇️】: 精简后:【GitHub跑通项目:YOLOs-CPP】+【计算机视觉】+【YOLOv11模型】+【windows+Cpp+ONN…

R语言用逻辑回归贝叶斯层次对本垒打数据与心脏移植数据后验预测检验模拟推断及先验影响分析|附数据代码...

全文链接:https://tecdat.cn/?p40152 在统计学领域中,层次建模是一种极为强大且实用的工具。它能够巧妙地处理复杂的数据结构,通过分层的方式对数据进行建模。在贝叶斯统计的框架内,层次建模优势尽显,其可以有效地融合…

解锁机器学习核心算法 | 随机森林算法:机器学习的超强武器

一、引言 在机器学习的广阔领域中,算法的选择犹如为一场冒险挑选趁手的武器,至关重要。面对海量的数据和复杂的任务,合适的算法能够化繁为简,精准地挖掘出数据背后隐藏的模式与价值。机器学习领域有十大核心算法,而随…

网络工程师 (43)IP数据报

前言 IP数据报是互联网传输控制协议(Internet Protocol,IP)的数据报格式,由首部和数据两部分组成。 一、首部 IP数据报的首部是控制部分,包含了数据报传输和处理所需的各种信息。首部可以分为固定部分和可变部分。 固定…

部署k8s 集群1.26.0(containerd方式)

随着k8s版本逐步更新,在不支持docker环境的情况下,需要使用containerd方式作为容器引擎。为了更好的个人学习使用,需要重新部署一套1.26.0版本的k8s集群,并且使用containerd方式作为容器引擎,版本为1.6.33。在部署过程…

移动通信发展史

概念解释 第一代网络通信 1G 第二代网络通信 2G 第三代网络通信 3G 第四代网络通信 4G 4g网络有很高的速率和很低的延时——高到500M的上传和1G的下载 日常中的4G只是用到了4G技术 运营商 移动-从民企到国企 联通-南方教育口有人 电信 铁通:成立于 2000 年…

HarmonyOS进程通信及原理

大家好,我是学徒小z,最近在研究鸿蒙中一些偏底层原理的内容,今天分析进程通信给大家,请用餐😊 文章目录 进程间通信1. 通过公共事件(ohos.commonEventManager)公共事件的底层原理 2. IPC Kit能…

openCV中如何实现滤波

图像滤波用于去除噪声和图像平滑,OpenCV 提供了多种滤波器: 1.1. 均值滤波: import cv2# 读取图像 image cv2.imread("example.jpg")# 均值滤波 blurred_image cv2.blur(image, (5, 5)) # (5, 5) 是滤波核的大小 滤波核大小的…

Linux网络 | 多路转接Reactor

前言:本节内容结束Linux网络部分。本节将要简单实现一下多路转接Reactor的代码,制作一个多路转接版本的四则运算计算器服务器。Reactor的代码相当困难,除了350多行新代码, 还要用到我们之前写的许多文件, 比如之前写的…

数控机床设备分布式健康监测与智能维护系统MTAgent

数控机床设备分布式健康监测与智能维护系统MTAgent-v1.1融合了目前各种先进的信号处理以及信息分析算法以算法工具箱的方式,采用了一种开发的、模块化的结构实现信号各种分析处理,采用Python编程语言,满足不同平台需求(包括Windows、Linux)。…

Opencv项目实战:26 信用卡号码识别与类型判定

项目介绍 在日常生活中,信用卡的使用越来越普遍。本项目的主要目标是通过图像处理技术自动识别信用卡号码,并根据信用卡号码的第一个数字判定信用卡的类型(如Visa、MasterCard等)。项目结合了图像预处理、轮廓检测、模板匹配等技…

利用websocket检测网络连接稳定性

浏览器中打开F12,控制台中输入以下内容 > 回车 > 等待结果 连接关闭 表示断网 let reconnectDelay 1000; // 初始重连间隔 let pingInterval null; let socketManuallyClosed false; // 标志是否手动关闭function createWebSocket() {if (socketManuallyCl…

WPF9-数据绑定进阶

目录 1. 定义2. 背景3. Binding源3.1. 使用Data Context作为Binding的源3.2. 使用LINQ检索结果作为Binding的源 4. Binding对数据的转换和校验4.1. 需求4.2. 实现步骤4.3. 值转换和校验的好处4.3.1. 数据转换的好处 4.4. 数据校验的好处4.5. 原理4.5.1. 值转换器原理4.5.2. 数据…

【Unity Shader编程】之图元装配与光栅化

执行方式:自动完成 图元装配自动化流程 顶点坐标存入装配区 → 按绘制模式连接顶点 → 生成完整几何图元 示例:gl.drawArrays(gl.TRIANGLES, 0, 3)自动生成三角形 会自动自动裁剪超出屏幕范围(NDC空间外)的三角形,仅保…

ssm121基于ssm的开放式教学评价管理系统+vue(源码+包运行+LW+技术指导)

项目描述 临近学期结束,还是毕业设计,你还在做java程序网络编程,期末作业,老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。这里根据疫情当下,你想解决的问…

网工项目理论1.11 网络出口设计

本专栏持续更新,整一个专栏为一个大型复杂网络工程项目。阅读本文章之前务必先看《本专栏必读》。 一.网络出口接入技术 二.单一出口网络结构 三.同运营商多出口结构 四.多运营商多出口结构——出向流量 五.多运营商多出口结构——服务器访问流量 六.多运营商多出口…

Django 5 实用指南(一)安装与配置

1.1 Django5的背景与发展 Django 自从2005年由Adrian Holovaty和Simon Willison在 Lawrence Journal-World 新闻网站上首次发布以来,Django 一直是 Web 开发领域最受欢迎的框架之一。Django 框架经历了多个版本的演进,每次版本更新都引入了新功能、改进了…

Redis实战-扩展Redis

扩展Redis 1、扩展读性能2、扩展写性能和内存容量3、扩展复杂的查询3.1 扩展联合查询3.2 扩展分片排序 如有侵权,请联系~ 如有错误,也欢迎批评指正~ 本篇文章大部分是来自学习《Redis实战》的笔记 1、扩展读性能 单台Redis服务器…

【AI面板识别】

题目描述 AI识别到面板上有N(1 ≤ N ≤ 100)个指示灯,灯大小一样,任意两个之间无重叠。 由于AI识别误差,每次别到的指示灯位置可能有差异,以4个坐标值描述AI识别的指示灯的大小和位置(左上角x1,y1&#x…