【现代深度学习技术】深度学习计算 | GPU

在这里插入图片描述

【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ PyTorch深度学习 ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。

文章目录

    • 一、计算设备
    • 二、张量与GPU
      • (一)存储在GPU上
      • (二)复制
      • (三)旁注
    • 三、神经网络与GPU
    • 小结


  我们回顾了过去20年计算能力的快速增长。简而言之,自2000年以来,GPU性能每十年增长1000倍。

  本节,我们将讨论如何利用这种计算性能进行研究。首先是如何使用单个GPU,然后是如何使用多个GPU和多个服务器(具有多个GPU)。

  我们先看看如何使用单个NVIDIA GPU进行计算。首先,确保至少安装了一个NVIDIA GPU。然后,下载NVIDIA驱动和CUDA并按照提示设置适当的路径。当这些准备工作完成,就可以使用nvidia-smi命令来查看显卡信息。

!nvidia-smi

在这里插入图片描述

  在PyTorch中,每个数组都有一个设备(device),我们通常将其称为环境(context)。默认情况下,所有变量和相关的计算都分配给CPU。有时环境可能是GPU。当我们跨多个服务器部署作业时,事情会变得更加棘手。通过智能地将数组分配给环境,我们可以最大限度地减少在设备之间传输数据的时间。例如,当在带有GPU的服务器上训练神经网络时,我们通常希望模型的参数在GPU上。

  要运行此部分中的程序,至少需要两个GPU。注意,对大多数桌面计算机来说,这可能是奢侈的,但在云中很容易获得。例如可以使用AWS EC2的多GPU实例。本专栏的其他章节大都不需要多个GPU,而本节只是为了展示数据如何在不同的设备之间传递。

一、计算设备

  我们可以指定用于存储和计算的设备,如CPU和GPU。默认情况下,张量是在内存中创建的,然后使用CPU计算它。

  在PyTorch中,CPU和GPU可以用torch.device('cpu')torch.device('cuda')表示。应该注意的是,cpu设备意味着所有物理CPU和内存,这意味着PyTorch的计算将尝试使用所有CPU核心。然而,gpu设备只代表一个卡和相应的显存。如果有多个GPU,我们使用torch.device(f'cuda:{i}')来表示第 i i i块GPU( i i i从0开始)。另外,cuda:0cuda是等价的。

import torch
from torch import nn

torch.device('cpu'), torch.device('cuda'), torch.device('cuda:1')

在这里插入图片描述

  我们可以查询可用gpu的数量。

torch.cuda.device_count()
2

  现在我们定义了两个方便的函数,这两个函数允许我们在不存在所需所有GPU的情况下运行代码。

def try_gpu(i=0):  #@save
    """如果存在,则返回gpu(i),否则返回cpu()"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

def try_all_gpus():  #@save
    """返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""
    devices = [torch.device(f'cuda:{i}')
             for i in range(torch.cuda.device_count())]
    return devices if devices else [torch.device('cpu')]

try_gpu(), try_gpu(10), try_all_gpus()

在这里插入图片描述

二、张量与GPU

  我们可以查询张量所在的设备。默认情况下,张量是在CPU上创建的。

x = torch.tensor([1, 2, 3])
x.device

在这里插入图片描述

  需要注意的是,无论何时我们要对多个项进行操作,它们都必须在同一个设备上。例如,如果我们对两个张量求和,我们需要确保两个张量都位于同一个设备上,否则框架将不知道在哪里存储结果,甚至不知道在哪里执行计算。

(一)存储在GPU上

  有几种方法可以在GPU上存储张量。例如,我们可以在创建张量时指定存储设备。接下来,我们在第一个gpu上创建张量变量X。在GPU上创建的张量只消耗这个GPU的显存。我们可以使用nvidia-smi命令查看显存使用情况。一般来说,我们需要确保不创建超过GPU显存限制的数据。

X = torch.ones(2, 3, device=try_gpu())
X

在这里插入图片描述

  假设我们至少有两个GPU,下面的代码将在第二个GPU上创建一个随机张量。

Y = torch.rand(2, 3, device=try_gpu(1))
Y

在这里插入图片描述

(二)复制

  如果我们要计算X + Y,我们需要决定在哪里执行这个操作。例如,如图1所示,我们可以将X传输到第二个GPU并在那里执行操作。不要简单地X加上Y,因为这会导致异常,运行时引擎不知道该怎么做:它在同一设备上找不到数据会导致失败。由于Y位于第二个GPU上,所以我们需要将X移到那里,然后才能执行相加运算。

在这里插入图片描述

图1 复制数据以在同一设备上执行操作

Z = X.cuda(1)
print(X)
print(Z)

在这里插入图片描述

  现在数据在同一个GPU上(ZY都在),我们可以将它们相加。

Y + Z

在这里插入图片描述

  假设变量Z已经存在于第二个GPU上。如果我们还是调用Z.cuda(1)会发生什么?它将返回Z,而不会复制并分配新内存。

Z.cuda(1) is Z

在这里插入图片描述

(三)旁注

  人们使用GPU来进行机器学习,因为单个GPU相对运行速度快。但是在设备(CPU、GPU和其他机器)之间传输数据比计算慢得多。这也使得并行化变得更加困难,因为我们必须等待数据被发送(或者接收),然后才能继续进行更多的操作。这就是为什么拷贝操作要格外小心。根据经验,多个小操作比一个大操作糟糕得多。此外,一次执行几个操作比代码中散布的许多单个操作要好得多。如果一个设备必须等待另一个设备才能执行其他操作,那么这样的操作可能会阻塞。这有点像排队订购咖啡,而不像通过电话预先订购:当客人到店的时候,咖啡已经准备好了。

  最后,当我们打印张量或将张量转换为NumPy格式时,如果数据不在内存中,框架会首先将其复制到内存中,这会导致额外的传输开销。更糟糕的是,它现在受制于全局解释器锁,使得一切都得等待Python完成。

三、神经网络与GPU

  类似地,神经网络模型可以指定设备。下面的代码将模型参数放在GPU上。

net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())

  在接下来的几章中,我们将看到更多关于如何在GPU上运行模型的例子,因为它们将变得更加计算密集。

  当输入为GPU上的张量时,模型将在同一GPU上计算结果。

net(X)

在这里插入图片描述

  让我们确认模型参数存储在同一个GPU上。

net[0].weight.data.device

在这里插入图片描述

  总之,只要所有的数据和参数都在同一个设备上,我们就可以有效地学习模型。在下面的章节中,我们将看到几个这样的例子。

小结

  • 我们可以指定用于存储和计算的设备,例如CPU或GPU。默认情况下,数据在主内存中创建,然后使用CPU进行计算。
  • 深度学习框架要求计算的所有输入数据都在同一设备上,无论是CPU还是GPU。
  • 不经意地移动数据可能会显著降低性能。一个典型的错误如下:计算GPU上每个小批量的损失,并在命令行中将其报告给用户(或将其记录在NumPy ndarray中)时,将触发全局解释器锁,从而使所有GPU阻塞。最好是为GPU内部的日志分配内存,并且只移动较大的日志。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/969831.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯备考:贪心算法之纪念品分组

P1094 [NOIP 2007 普及组] 纪念品分组 - 洛谷 这道题我们的贪心策略就是每次找出最大的和最小的&#xff0c;如果他们加起来不超过我们给的值&#xff0c;就分成一组&#xff0c;如果超过了&#xff0c;就把大的单独成一组&#xff0c;小的待定 #include <iostream> #i…

【Elasticsearch】Mapping概述

以下是Elasticsearch中提到的关于Mapping的各模块概述&#xff1a; --- 1.Dynamic mapping&#xff08;动态映射&#xff09; 动态映射是指Elasticsearch在索引文档时&#xff0c;自动检测字段类型并创建字段映射的过程。当你首次索引一个文档时&#xff0c;Elasticsearch会根…

java商城解决方案

数字化时代&#xff0c;电子商务已成为企业拓展市场的重要渠道。对于想要建立在线商店的企业来说&#xff0c;选择正确的技术堆栈至关重要。 Java作为一种成熟且广泛使用的编程语言&#xff0c;为构建购物中心提供了强大的功能和灵活性。 商城Java源码&#xff1a;商城开发的核…

SSM开发(十二) mybatis的动态SQL

目录 一、为什么需要动态SQL? Mybatis 动态 sql 是做什么的? 二、多种动态 SQL 元素 三、示例 1、model定义 2、数据库定义 3、UserMapper接口及UserMapper.xml内容定义 if标签 choose/when/otherwise 标签 foreach标签 trim 标签 四、动态SQL注意 一、为什么需…

HCIA项目实践---OSPF的知识和原理总结

9.5 OSPF 9.5.1 从哪些角度评判一个动态路由协议的好坏&#xff1f; &#xff08;1&#xff09;选路佳&#xff08;是否会出环&#xff09; OSPF 协议采用链路状态算法&#xff0c;通过收集网络拓扑信息来计算最短路径&#xff0c;从根本上避免了路由环路的产生。 &#xff08…

HCIA项目实践---OSPF的基本配置

9.5.12 OSPF的基本配置 &#xff08;所搭环境如上图所示&#xff09; A 先配置IP地址 (先进入路由器R1的0/0/0接口配置IP地址&#xff0c;再进入环回接口配置IP地址) &#xff08;配置R2路由器的0/0/0和0/0/1以及环回接口的IP地址&#xff09; &#xff08;置R3路由器的0/0/0接…

github上创建person access token

在 GitHub 上创建 Personal Access Token&#xff08;PAT&#xff09; 时&#xff0c;权限设置非常重要。正确的权限设置可以确保 Token 能够访问所需的资源&#xff0c;同时避免授予过多权限带来的安全风险。以下是详细的权限设置说明&#xff1a; 1. 进入 Token 创建页面 登录…

【网络编程】之Udp网络通信步骤

【网络编程】之Udp网络通信步骤 TCP网络通信TCP网络通信的步骤对于服务器端对于客户端 TCP实现echo功能代码实现服务器端getsockname函数介绍 客户端效果展示 对比两组函数 TCP网络通信 TCP网络通信的步骤 对于服务器端 创建监听套接字。&#xff08;调用socket函数&#xff…

【教程】MySQL数据库学习笔记(七)——多表操作(持续更新)

写在前面&#xff1a; 如果文章对你有帮助&#xff0c;记得点赞关注加收藏一波&#xff0c;利于以后需要的时候复习&#xff0c;多谢支持&#xff01; 【MySQL数据库学习】系列文章 第一章 《认识与环境搭建》 第二章 《数据类型》 第三章 《数据定义语言DDL》 第四章 《数据操…

国自然地区基金|影像组学联合病理组学预测进展期胃癌术后预后的研究|基金申请·25-02-13

小罗碎碎念 今天和大家分享一个国自然地区科学项目&#xff0c;执行年限为2020.01&#xff5e;2023.12&#xff0c;直接费用为34万元。 胃癌在我国发病形势严峻&#xff0c;现有TNM分期预后评估存在局限&#xff0c;难以满足精准医疗需求。本项目运用“医工结合&#xff0c;学科…

nvm下载安装教程(node.js 下载安装教程)

前言 nvm 官网地址&#xff1a;https://nvm.uihtm.com nvm 是一个 node.js 的版本管理工具&#xff0c;相比于仅安装 node.js&#xff0c;我们可以使用 nvm 直接下载或卸载 node.js&#xff0c;可以同时安装多个 node.js 版本&#xff0c;并动态的切换本地环境中的 node.js 环…

项目BUG

项目BUG 前言 我创作这篇博客的目的是记录学习技术过程中的笔记。希望通过分享自己的学习经历&#xff0c;能够帮助到那些对相关领域感兴趣或者正在学习的人们。 项目BUG 1.低频率信号(100k或 200K以下)可以直接用一根导线焊接出几根导线来分几路&#xff0c;高频率信号只能…

Apollo 9.0 速度动态规划决策算法 – path time heuristic optimizer

文章目录 1. 动态规划2. 采样3. 代价函数3.1 障碍物代价3.2 距离终点代价3.3 速度代价3.4 加速度代价3.5 jerk代价 4. 回溯 这一章将来讲解速度决策算法&#xff0c;也就是SPEED_HEURISTIC_OPTIMIZER task里面的内容。Apollo 9.0使用动态规划算法进行速度决策&#xff0c;从类名…

吴恩达深度学习——词嵌入

内容来自https://www.bilibili.com/video/BV1FT4y1E74V&#xff0c;仅为本人学习所用。 文章目录 词表特征词嵌入的类比推理嵌入矩阵词嵌入Word2Vec跳字模型模型细节负采样 GloVe词向量&#xff08;了解&#xff09; 情绪分类 词表特征 使用 one-hot 对词汇进行编码时&#x…

数据结构——Makefile、算法、排序(2025.2.13)

目录 一、Makefile 1.功能 2.基本语法和相关操作 &#xff08;1&#xff09;创建Makefile文件 &#xff08;2&#xff09;编译规则 &#xff08;3&#xff09;编译 &#xff08;4&#xff09;变量 ①系统变量 ②自定义变量 二、 算法 1.定义 2.算法的设计 &#xff…

达梦:TPCC 压测

目录 造数1. 脚本启动2. 检查数据库信息3. 删除旧用户和表空间4. 创建新的表空间5. 创建用户和表6. 数据加载7. 创建索引8. 创建存储过程和序列9. 检查数据空间使用情况10. 启用表的快速访问池11. 数据加载完成总结 压测1. 脚本启动2. 检查数据表空间3. 设置表的快速池标志4. 检…

2024 StoryDiffusion 文字/文字+图像----->视频

基于扩散模型的生成模型在生成长序列图像和视频时面临内容一致性的重大挑战&#xff0c;尤其是涉及复杂主题和细节的场景中&#xff0c;角色身份、服饰风格等元素难以保持连贯。传统方法通常依赖潜在空间的运动预测&#xff0c;但长视频生成时易出现不稳定性。针对这些问题&…

在带有Intel Arc GPU的Windows上安装IPEX-LLM

在带有Intel Arc GPU的Windows上安装IPEX-LLM 在带有Intel Arc GPU的Windows上安装IPEX-LLM先决条件安装 GPU 驱动安装 Visual Studio 2022 社区版安装 Intel oneAPI Base Toolkit安装 IPEX-LLM创建虚拟环境环境验证 可能遇到的问题 在带有Intel Arc GPU的Windows上安装IPEX-LL…

流程控制(if—elif—else,while , for ... in ...)

1. 流程控制 流程&#xff1a;计算机执行代码的顺序 流程控制&#xff1a;对计算机执行代码的顺序的管理 2. 流程控制分类 流程控制分类&#xff1a; 顺序流程&#xff1a;自上而下的执行结构&#xff0c;即 Python 默认流程 选择/分支流程&#xff1a;根据某一步的判断&am…

SpringBoot实战:高效获取视频资源

文章目录 前言技术实现SpringBoot项目构建产品选取配置数据采集 号外号外 前言 在短视频行业高速发展的背景下&#xff0c;海量内容数据日益增长&#xff0c;每天都有新的视频、评论、点赞、分享等数据涌现。如何高效、精准地获取并处理这些庞大的数据&#xff0c;已成为各大平…