哪吒闹海!SCI算法+分解组合+四模型原创对比首发!SGMD-FATA-Transformer-LSTM多变量时序预测

哪吒闹海!SCI算法+分解组合+四模型原创对比首发!SGMD-FATA-Transformer-LSTM多变量时序预测

目录

    • 哪吒闹海!SCI算法+分解组合+四模型原创对比首发!SGMD-FATA-Transformer-LSTM多变量时序预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述

基本介绍

1.SCI算法海市蜃楼优化算法优化算法+分解组合对比!SGMD-FATA-Transformer-LSTM多变量时间序列光伏功率预测,辛几何模态分解+海市蜃楼优化算法优化Transformer结合长短期记忆神经网络多变量时间序列预测(程序可以作为核心级论文代码支撑,目前尚未发表);
海市蜃楼优化算法(Fata morgana algorithm, FATA)是一种新型的元启发式算法(智能优化算法),灵感来源于海市蜃楼的形成过程,该成果由Ailiang Qi于2024年8月发表在SCI的Top期刊《Neurocomputing》上!
2.算法优化参数为:学习率,隐含层单元数目,最大训练周期,运行环境为Matlab2023b及以上;
3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。
先运行main1SGMD,进行SGMD分解;再运行main2FATATransformerLSTM,四个模型对比;注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数。

数据集
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考文献
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复哪吒闹海!SCI算法+分解组合+四模型原创对比首发!SGMD-FATA-Transformer-LSTM多变量时序预测(Matlab)




%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

clc;
clear 
close all
warning off
%% CSDN《机器学习之心》
%% Transformer预测
tic
X = xlsread('北半球光伏数据.xlsx');
load SGMD_data.mat


disp('…………………………………………………………………………………………………………………………')

num_samples = length(X);       % 样本个数 
kim = 5;                       % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(X,2);

%  重构数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换%% CSDN《机 器 学 习 之 心》
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

% Transformer建模
numChannels = f_;                                             % 定义输入的通道数,变量 f_ 代表特征的维度
maxPosition = 256*2;                                          % 最大位置编码,通常用于序列长度的上限,这里设为 512
numHeads = 4;                                                 % 自注意力机制中的头数
numKeyChannels = numHeads*32;                                 % 每个头的键通道数,总键通道数为 128








参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/967679.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MybatisPlus常用增删改查

记录下MybatisPlus的简单的增删改查 接口概述 Service和Mapper区别 Mapper简化了单表的sql操作步骤(CRUD),而Serivce则是对Mapper的功能增强。 Service虽然加入了数据库的操作,但还是以业务功能为主,而更加复杂的SQL…

支付宝安全发全套解决方案

产品价值 ● 通过支付宝的资金能力,让服务商机构通过信息流驱动资金流,在不碰触客户企业资金的同时,为客户企业完成转账。账目清晰,无合规和资质风险。 ● 为服务商提供全链路的资金流动明细信息,服务商可以将这些信息…

PHP盲盒商城系统源码 晒图+免签+短信验证+在线回收 thinkphp框架

源码介绍 PHP盲盒商城系统源码 晒图免签短信验证在线回收 thinkphp框架 源码前端uniapp开发,可以打包成APP(非H5封壳)H5,接其他平台支付通道,前后端全开源 H5盲盒首页可以直接开盒新UI 修复优化BUG,修复无…

Redis企业开发实战(四)——点评项目之分布式锁

目录 一、分布式锁介绍 (一)分布式锁基本介绍 (二)分布式锁满足的条件 (三)常见的分布式锁 1.Mysql 2.Redis 3.Zookeeper 二、Redis分布式锁详解 (一)Redis分布式锁的实现核心思路 获取锁: 释放锁: (二)基于Redis实现分布式锁初级版本 1.…

【HarmonyOS Next 自定义可拖拽image】

效果图: 代码: import display from "ohos.display" import { AppUtil } from "pura/harmony-utils"/*** 自定义可拖拽图标组件*/ Component export default struct DraggableImage {imageResource?: ResourceimageHeight: numbe…

Jmeter快速实操入门

以下操作需要提前安装了JDK(JDK版本要Java8),并且配置了环境变量。 1、下载Jmeter,下载连接。选择zip版本,解压即可。 2、解压后的文件目录如下。 3、进入bin文件夹,双击ApacheJMeter,运行Jmeter。 4、在测…

学习 PostgreSQL 流复制

PostgreSQL 流复制 PostgreSQL数据库异常中止后,数据库刚重启时,会重放停机前最后一个checkpoint点之后的 WAL日志,在把数据库恢复到停机的状态后,自动进入正常的状态,可以接收其他用户的查询和修改。 想象另一个场景…

macbook2015升级最新MacOS 白苹果变黑苹果

原帖:https://www.bilibili.com/video/BV13V411c7xz/MAC OS系统发布了最新的Sonoma,超酷的动效锁屏壁纸,多样性的桌面小组件,但是也阉割了很多老款机型的升级权利,所以我们可以逆向操作,依旧把老款MAC设备强…

2025年最新版武书连SCD期刊(中国科学引文数据库)来源期刊已更新,可下载PDF版!需要的作者进来了解~

2025年最新版武书连SCD期刊(中国科学引文数据库)来源期刊已更新! 官网是不提供免费查询的。小编给大家两个路径,无需下载PDF,随时随地都能查25版SCD目录。 路径一:中州期刊联盟官网,25版SCD目…

deepseek大模型集成到idea

1 下载插件 安装CodeGPT打开 IntelliJ IDEA,鼠标点击左上角导航栏,File --> Setting 2 申请API key 3 配置deepseek 在 Settings 界面中的搜索框中,搜索 CodeGPT,路径 Tools --> CodeGPT --> Providers --> 如下一…

本地部署DeepSeek,并使用UI界面进行快速交互

一.需要本地部署的原因 1.我们在deepseek的官网界面进行交互时,经常会出现如下问题,不能正常交互,很是困扰: 2.本地部署的好处 就是能够很流畅的与deepseek进行交互;也有缺点,现在官网交互的版本更高一点…

8.flask+websocket

http是短连接,无状态的。 websocket是长连接,有状态的。 flask中使用websocket from flask import Flask, request import asyncio import json import time import websockets from threading import Thread from urllib.parse import urlparse, pars…

深度学习之神经网络框架搭建及模型优化

神经网络框架搭建及模型优化 目录 神经网络框架搭建及模型优化1 数据及配置1.1 配置1.2 数据1.3 函数导入1.4 数据函数1.5 数据打包 2 神经网络框架搭建2.1 框架确认2.2 函数搭建2.3 框架上传 3 模型优化3.1 函数理解3.2 训练模型和测试模型代码 4 最终代码测试4.1 SGD优化算法…

【Matlab优化算法-第15期】基于NSGA-II算法的铁路物流园区功能区布局优化

基于NSGA-II算法的铁路物流园区功能区布局优化 一、前言 铁路物流园区的合理布局对于提高物流效率、降低运营成本具有重要意义。随着铁路物流的快速发展,传统的铁路货场需要升级为综合物流园区,以满足多式联运和综合物流服务的需求。本文将介绍一种基于…

手写一个C++ Android Binder服务及源码分析

手写一个C Android Binder服务及源码分析 前言一、 基于C语言编写Android Binder跨进程通信Demo总结及改进二、C语言编写自己的Binder服务Demo1. binder服务demo功能介绍2. binder服务demo代码结构图3. binder服务demo代码实现3.1 IHelloService.h代码实现3.2 BnHelloService.c…

WebSocket connection failed 解决

WebSocket connection failed 解决 前言 这里如果是新手小白不知道 WebSocket 是什么的? 怎么使用的?或者想深入了解的 那可以 点击这里 几分钟带你快速了解并使用,已经一些进阶讲解; WebSocket,多应用于需要双向数据…

Python截图轻量化工具

一、兼容局限性 这是用Python做的截图工具,不过由于使用了ctypes调用了Windows的API, 同时访问了Windows中"C:/Windows/Cursors/"中的.cur光标样式文件, 这个工具只适用于Windows环境; 如果要提升其跨平台性的话,需要考虑替换cty…

字节跳动后端一面

📍1. Gzip压缩技术详解 Gzip是一种流行的无损数据压缩格式,它使用DEFLATE算法来减少文件大小,广泛应用于网络传输和文件存储中以提高效率。 🚀 使用场景: • 网站优化:通过压缩HTML、CSS、JavaScript文件来…

Visual Studio踩过的坑

统计Unity项目代码行数 编辑-查找和替换-在文件中查找 查找内容输入 b*[^:b#/].*$ 勾选“使用正则表达式” 文件类型留空 也有网友做了指定,供参考 !*\bin\*;!*\obj\*;!*\.*\*!*.meta;!*.prefab;!*.unity 打开Unity的项目 注意:只是看&#xff0…

智慧机房解决方案(文末联系,领取整套资料,可做论文)

智慧机房解决方案-软件部分 一、方案概述 本智慧机房解决方案旨在通过硬件设备与软件系统的深度整合,实现机房的智能化管理与服务,提升机房管理人员的工作效率,优化机房运营效率,确保机房设备的安全稳定运行。软件部分包括机房管…