基于 GEE 利用插值方法填补缺失影像

目录

1 完整代码

2 运行结果



利用GEE合成NDVI时,如果研究区较大,一个月的影像覆盖不了整个研究区,就会有缺失的地方,还有就是去云之后,有云量的地区变成空值。

所以今天来用一种插值的方法来填补缺失的影像,以NDVI为例,主要实现原理其实就是用前后两个月的NDVI的均值进行填补。

1 完整代码

var roi = table;
Map.centerObject(roi,7)
var styling = {color:"red",fillColor:"00000000"};
Map.addLayer(roi.style(styling),{},"geometry")
var img_normalize = function(img){ 
  var minMax = img.reduceRegion({ 
    reducer:ee.Reducer.minMax(), 
    geometry: roi, 
    scale: 30, 
    maxPixels: 10e13, 
    tileScale: 16 }) 
var year = img.get('year') 
var normalize = ee.ImageCollection.fromImages( 
  img.bandNames().map(function(name){ 
    name = ee.String(name); 
    var band = img.select(name); 
    return band.unitScale(ee.Number(minMax.get(name.cat('_min'))), ee.Number(minMax.get(name.cat('_max')))); }) 
        ).toBands().rename(img.bandNames()); 
        return normalize;
  
}
function maskL457sr(image) {//l57去云
  // Bit 0 - Fill
  // Bit 1 - Dilated Cloud
  // Bit 2 - Unused
  // Bit 3 - Cloud
  // Bit 4 - Cloud Shadow
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
  var thermalBand = image.select('ST_B6').multiply(0.00341802).add(149.0);

  // Replace the original bands with the scaled ones and apply the masks.
  return image.addBands(opticalBands, null, true)
      .addBands(thermalBand, null, true)
      .updateMask(qaMask)
      .updateMask(saturationMask);
}
/*function maskL8sr(image) {
  // Bit 0 - Fill
  // Bit 1 - Dilated Cloud
  // Bit 2 - Cirrus
  // Bit 3 - Cloud
  // Bit 4 - Cloud Shadow
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
  var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);

  // Replace the original bands with the scaled ones and apply the masks.
  return image.addBands(opticalBands, null, true)
      .addBands(thermalBands, null, true)
      .updateMask(qaMask)
      .updateMask(saturationMask);
}*/
var imageCollection = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2').filterBounds(roi);//1111111
var monthCount = ee.List.sequence(0, 11);



// 通过图像收集,生成每月NDVI中值图像
var composites = ee.ImageCollection.fromImages(monthCount.map(function(m) {
  var startMonth = 1; // 从1月开始
  var startYear = ee.Number(2000); // 1993-1
  
  var month = ee.Date.fromYMD(startYear, startMonth, 1).advance(m,'month').get('month');
  var year = ee.Date.fromYMD(startYear, startMonth, 1).advance(m,'month').get('year')
  
  // 按年筛选,然后按月筛选
  var filtered = imageCollection.filter(ee.Filter.calendarRange({
    start: year.subtract(1), // 过去两年的平均数
    end: year,
    field: 'year'
  })).filter(ee.Filter.calendarRange({
    start: month,
    field: 'month'
  }));
  // mask for clouds and then take the median///
  var composite = filtered.map(maskL457sr).median().clip(roi);
  return composite.normalizedDifference(['SR_B4', 'SR_B3']).rename('NDVI')
      .set('month', ee.Date.fromYMD(startYear, startMonth, 1).advance(m,'month'))
      .set('system:time_start', ee.Date.fromYMD(startYear, startMonth, 1).advance(m,'month').millis());
}));
print(composites);
var stackCollection = function(collection) {
  // 创建一个初始图像.
  var first = ee.Image(collection.first()).select([]);

  // Write a function that appends a band to an image.
  var appendBands = function(image, previous) {
    return ee.Image(previous).addBands(image);
  };
  return ee.Image(collection.iterate(appendBands, first));
};
var compos = stackCollection(composites);
print('插值前', compos);


// 用上个月和下个月的平均值替换被遮挡的像素 
var replacedVals = composites.map(function(image){
  var currentDate = ee.Date(image.get('system:time_start'));
  var meanImage = composites.filterDate(
                currentDate.advance(-2,'month'), currentDate.advance(2, 'month')).mean();//33333333333333333333333max min median
  // 替换所有被屏蔽的值
  return meanImage.where(image, image);
});

// 将ImageCollection堆叠成一个多波段的光栅,以便下载
var stackCollection = function(collection) {
  // 创建一个初始图像.
  var first = ee.Image(collection.first()).select([]);

  // Write a function that appends a band to an image.
  var appendBands = function(image, previous) {
    return ee.Image(previous).addBands(image);
  };
  return ee.Image(collection.iterate(appendBands, first));
};
var stacked = stackCollection(replacedVals);
print('stacked image', stacked);
var Vis = {

  min: -1,

  max: 1.0,

  palette: [

    'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901',

    '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01',

    '012E01', '011D01', '011301'

  ],

};
Map.addLayer(compos.select(6), Vis, '插值前');
// .0-11  分别代表1-12个月
Map.addLayer(stacked.select(6), Vis, 'NDVI');//555555555

Export.image.toDrive({
  image: stacked.select(0),//选择导出影像的波段0-11  分别代表1-12个月
  description: 'NDVI',//选择导出云盘的文件夹名称
  crs: "EPSG:4326",//坐标系
  scale: 30,//空间分辨率
  region: roi,//研究区
  maxPixels: 1e13,//最大像元个数
  folder: 'NDVI'
});

2 运行结果

填补空值之前的效果
填补空值之后的效果

可以看出,填补的效果还是非常明显的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/967651.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

海云安开发者智能助手(D10)全面接入DeepSeek,赋能开发者安全高效编码新范式

海云安正式宣布完成与DeepSeek(深度求索)的深度技术融合,旗下核心产品D10开发者智能助手全面接入DeepSeek R1模型。此次合作标志着海云安在"AI驱动开发安全"领域实现重要突破。数据显示,通过DeepSeek R1模型的优化与蒸馏…

Docker 1. 基础使用

1. Docker Docker 是一个 基于容器的虚拟化技术,它能够将应用及其依赖打包成 轻量级、可移植 的容器,并在不同的环境中运行。 2. Docker指令 (1)查看已有镜像 docker images (2)删除镜像 docker rmi …

【批量获取图片信息】批量获取图片尺寸、海拔、分辨率、GPS经纬度、面积、位深度、等图片属性里的详细信息,提取出来后导出表格,基于WPF的详细解决方案

摄影工作室通常会有大量的图片素材,在进行图片整理和分类时,需要知道每张图片的尺寸、分辨率、GPS 经纬度(如果拍摄时记录了)等信息,以便更好地管理图片资源,比如根据图片尺寸和分辨率决定哪些图片适合用于…

如何使用C++将处理后的信号保存为PNG和TIFF格式

在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示。C提供了多种库来处理图像数据,本文将介绍如何使用stb_image_write库保存为PNG格式图像以及使用OpenCV库保存为TIFF格式图像。 1. PNG格式保存 使用stb_ima…

【机器学习】超参数的选择,以kNN算法为例

分类准确度 一、摘要二、超参数的概念三、调参的方法四、实验搜索超参数五、扩展搜索范围六、考虑距离权重的kNN算法七、距离的计算方法及代码实现八、明可夫斯基距离的应用九、网格搜索超参数 一、摘要 本博文讲解了机器学习中的超参数问题,以K近邻算法为例&#…

使用PyCharm进行Django项目开发环境搭建

如果在PyCharm中创建Django项目 1. 打开PyCharm,选择新建项目 2.左侧选择Django,并设置项目名称 3.查看项目解释器初始配置 4.新建应用程序 执行以下操作之一: 转到工具| 运行manage.py任务或按CtrlAltR 在打开的manage.pystartapp控制台…

【python】matplotlib(animation)

文章目录 1、matplotlib.animation1.1、FuncAnimation1.2、修改 matplotlib 背景 2、matplotlib imageio2.1、折线图2.2、条形图2.3、散点图 3、参考 1、matplotlib.animation 1.1、FuncAnimation matplotlib.animation.FuncAnimation 是 Matplotlib 库中用于创建动画的一个…

IntelliJ IDEA使用经验(十三):使用Git克隆github的开源项目

文章目录 问题背景办法1、设置git代理;2、再次克隆项目;3、再次按常规方式进行git克隆即可。 问题背景 由于github在国外,很多时候我们在使用idea克隆开源项目的时候,没办法检出,提示 连接重置。 办法 1、设置git代…

人工智能学习(七)之神经网络

目录 一、引言 二、经典神经网络回顾 (一)结构与计算过程 (二)局限性 三、循环神经网络(RNN)原理 (一)基本结构 (二)计算过程 (三&#xf…

IDEA编写SpringBoot项目时使用Lombok报错“找不到符号”的原因和解决

目录 概述|背景 报错解析 解决方法 IDEA配置解决 Pom配置插件解决 概述|背景 报错发生背景:在SpringBoot项目中引入Lombok依赖并使用后出现"找不到符号"的问题。 本文讨论在上述背景下发生的报错原因和解决办法,如果仅为了解决BUG不论原…

使用golang wails写了一个桌面端小工具:WoWEB, 管理本地多前端项目

WoWEB 本地快速启动 http 服务。 辅助管理本地前端项目。 使用界面配置代理转发。 支持平台 windows 10macOS 功能描述 管理本地前端项目启动本地 HTTP 服务,可本地或者局域网访问快速打开项目文件夹配置 HTTP 代理转发规则,方便开发调试 以下情况…

Unity Dots理论学习-5.与ECS相关的概念

DOTS的面向数据编程方式比你在MonoBehaviour项目中常见的面向对象编程方式更适合硬件开发。可以尝试理解一些与数据导向设计(DOD)相关的关键概念,以及这些概念如何影响你的代码,对你在MonoBehaviour项目中的C#编程通常是较少涉及的…

【hive】记一次hiveserver内存溢出排查,线程池未正确关闭导致

一、使用 MemoryAnalyzer软件打开hprof文件 很大有30G,win内存24GB,不用担心可以打开,ma软件能够生成索引文件,逐块分析内存,如下图。 大约需要4小时。 overview中开不到具体信息。 二、使用Leak Suspects功能继续…

(篇三)基于PyDracula搭建一个深度学习的软件之解析yolo算法融合

文章目录 1YoloPredictor类——检测器1.1继承BasePredictor解析1.2继承QObject解析 2MainWindow类——主窗口 在前面两篇中,篇一介绍了启动界面的制作,篇二介绍了如何修改PyDracula的界面,那么这一篇我们学习一下yolo要融合进入软件中&#x…

26~31.ppt

目录 26.北京主要的景点 题目 解析 27.创新产品展示及说明会 题目​ 解析 28.《小企业会计准则》 题目​ 解析 29.学习型社会的学习理念 题目​ 解析 30.小王-产品展示信息 题目​ 解析 31.小王-办公理念-信息工作者的每一天 题目​ 解析 26.北京主要的景点…

Vue.js 状态管理库Pinia

Pinia Pinia :Vue.js 状态管理库Pinia持久化插件-persist Pinia :Vue.js 状态管理库 Pinia 是 Vue 的专属状态管理库,它允许你跨组件或页面共享状态。 要使用Pinia ,先要安装npm install pinia在main.js中导入Pinia 并使用 示例…

day10-字符串

目录 字符串1、API 和 API 帮助文档2、String概述3、String构造方法代码实现 和 内存分析3.1 创建String对象的两种方式3.2 Java的内存模型 4、字符串的比较4.1 号的作用4.2 equals方法的作用 练习5、用户登录6、遍历字符串和统计字符个数7、字符串拼接和翻转8、较难练习-金额转…

从二叉树遍历深入理解BFS和DFS

1. 介绍 1.1 基础 BFS(Breadth-First Search,广度优先搜索)和 DFS(Depth-First Search,深度优先搜索)是两种常见的图和树的遍历算法。 BFS:从根节点(或起始节点)开始&am…

【大数据安全分析】大数据安全分析技术框架与关键技术

在数字化时代,网络安全面临着前所未有的挑战。传统的网络安全防护模式呈现出烟囱式的特点,各个安全防护措施和数据相互孤立,形成了防护孤岛和数据孤岛,难以有效应对日益复杂多变的安全威胁。而大数据分析技术的出现,为…

亚博microros小车-原生ubuntu支持系列 27、手掌控制小车运动

背景知识 本节跟上一个测试类似:亚博microros小车-原生ubuntu支持系列:26手势控制小车基础运动-CSDN博客 都是基于MediaPipe hands做手掌、手指识别的。 为了方便理解,在贴一下手指关键点分布。手掌位置就是靠第9点来识别的。 2、程序说明…