吴恩达深度学习——卷积神经网络实例分析

内容来自https://www.bilibili.com/video/BV1FT4y1E74V,仅为本人学习所用。

文章目录

  • LeNet-5
  • AlexNet
  • VGG-16
  • ResNets
    • 残差块
  • 1*1卷积

LeNet-5

在这里插入图片描述

  • 输入层:输入为一张尺寸是 32 × 32 × 1 32×32×1 32×32×1的图像,其中 32 × 32 32×32 32×32是图像的长和宽, 1 1 1表示通道数。
  • 第一层卷积
    • 卷积核参数:卷积核大小为 5 × 5 5×5 5×5,步长 s = 1 s = 1 s=1,卷积核数量 n c = 6 n_c = 6 nc=6
    • 输出尺寸计算:根据公式 n H = ⌊ n H i n − f + 1 s ⌋ n_H=\lfloor\frac{n_{H_{in}} - f + 1}{s}\rfloor nH=snHinf+1 n W = ⌊ n W i n − f + 1 s ⌋ n_W=\lfloor\frac{n_{W_{in}} - f + 1}{s}\rfloor nW=snWinf+1 n H i n n_{H_{in}} nHin n W i n n_{W_{in}} nWin为输入特征图的高和宽, f f f为卷积核尺寸, s s s为步长),这里 n H i n = n W i n = 32 n_{H_{in}}=n_{W_{in}} = 32 nHin=nWin=32 f = 5 f = 5 f=5 s = 1 s = 1 s=1,则 n H = ⌊ 32 − 5 + 1 1 ⌋ = 28 n_H=\lfloor\frac{32 - 5 + 1}{1}\rfloor = 28 nH=1325+1=28 n W = ⌊ 32 − 5 + 1 1 ⌋ = 28 n_W=\lfloor\frac{32 - 5 + 1}{1}\rfloor = 28 nW=1325+1=28。所以输出特征图尺寸为 28 × 28 × 6 28×28×6 28×28×6
  • 第一层平均池化
    • 池化核参数:池化核大小 f = 2 f = 2 f=2,步长 s = 2 s = 2 s=2
    • 输出尺寸计算 n H = ⌊ 28 − 2 + 1 2 ⌋ = 14 n_H=\lfloor\frac{28 - 2 + 1}{2}\rfloor = 14 nH=2282+1=14 n W = ⌊ 28 − 2 + 1 2 ⌋ = 14 n_W=\lfloor\frac{28 - 2 + 1}{2}\rfloor = 14 nW=2282+1=14。输出特征图尺寸为 14 × 14 × 6 14×14×6 14×14×6
  • 第二层卷积
    • 卷积核参数:卷积核大小为 5 × 5 5×5 5×5,步长 s = 1 s = 1 s=1,卷积核数量 n c = 16 n_c = 16 nc=16
    • 输出尺寸计算 n H = ⌊ 14 − 5 + 1 1 ⌋ = 10 n_H=\lfloor\frac{14 - 5 + 1}{1}\rfloor = 10 nH=1145+1=10 n W = ⌊ 14 − 5 + 1 1 ⌋ = 10 n_W=\lfloor\frac{14 - 5 + 1}{1}\rfloor = 10 nW=1145+1=10。输出特征图尺寸为 10 × 10 × 16 10×10×16 10×10×16
  • 第二层平均池化
    • 池化核参数:池化核大小 f = 2 f = 2 f=2,步长 s = 2 s = 2 s=2
    • 输出尺寸计算 n H = ⌊ 10 − 2 + 1 2 ⌋ = 5 n_H=\lfloor\frac{10 - 2 + 1}{2}\rfloor = 5 nH=2102+1=5 n W = ⌊ 10 − 2 + 1 2 ⌋ = 5 n_W=\lfloor\frac{10 - 2 + 1}{2}\rfloor = 5 nW=2102+1=5。输出特征图尺寸为 5 × 5 × 16 5×5×16 5×5×16,将其展平后神经元数量为 5 × 5 × 16 = 400 5×5×16 = 400 5×5×16=400
  • 全连接层
    • 第一个全连接层有 120 120 120个神经元,连接展平后的 400 400 400个神经元。
    • 第二个全连接层有 84 84 84个神经元,连接第一个全连接层的 120 120 120个神经元。
  • 输出层:通过Softmax函数输出 10 10 10个类别的概率分布,用于分类任务。

AlexNet

在这里插入图片描述

  • 输入层:输入图像尺寸为 227 × 227 × 3 227×227×3 227×227×3,其中 227 × 227 227×227 227×227是图像的长和宽, 3 3 3表示通道数。
  • 第一层卷积
    • 卷积核:卷积核大小为 11 × 11 11×11 11×11,步长 s = 4 s = 4 s=4,卷积核数量 n c = 96 n_c = 96 nc=96
    • 输出尺寸:根据公式 n H = ⌊ n H i n − f + 1 s ⌋ n_H=\lfloor\frac{n_{H_{in}} - f + 1}{s}\rfloor nH=snHinf+1 n W = ⌊ n W i n − f + 1 s ⌋ n_W=\lfloor\frac{n_{W_{in}} - f + 1}{s}\rfloor nW=snWinf+1 n H i n n_{H_{in}} nHin n W i n n_{W_{in}} nWin为输入特征图的高和宽, f f f为卷积核尺寸, s s s为步长),可得 n H = ⌊ 227 − 11 + 1 4 ⌋ = 55 n_H=\lfloor\frac{227 - 11 + 1}{4}\rfloor = 55 nH=422711+1=55 n W = ⌊ 227 − 11 + 1 4 ⌋ = 55 n_W=\lfloor\frac{227 - 11 + 1}{4}\rfloor = 55 nW=422711+1=55。所以输出特征图尺寸为 55 × 55 × 96 55×55×96 55×55×96
  • 第一层最大池化
    • 池化核:池化核大小为 3 × 3 3×3 3×3,步长 s = 2 s = 2 s=2
    • 输出尺寸 n H = ⌊ 55 − 3 + 1 2 ⌋ = 27 n_H=\lfloor\frac{55 - 3 + 1}{2}\rfloor = 27 nH=2553+1=27 n W = ⌊ 55 − 3 + 1 2 ⌋ = 27 n_W=\lfloor\frac{55 - 3 + 1}{2}\rfloor = 27 nW=2553+1=27。输出特征图尺寸为 27 × 27 × 96 27×27×96 27×27×96
  • 第二层卷积:
    • 卷积核:卷积核大小为 5 × 5 5×5 5×5,填充 p p p为“same”(保证输出尺寸与输入相同),卷积核数量 n c = 256 n_c = 256 nc=256
    • 输出尺寸:当使用“same”填充时,输出尺寸与输入相同,即 27 × 27 × 256 27×27×256 27×27×256
  • 第二层最大池化
    • 池化核:池化核大小为 3 × 3 3×3 3×3,步长 s = 2 s = 2 s=2
    • 输出尺寸 n H = ⌊ 27 − 3 + 1 2 ⌋ = 13 n_H=\lfloor\frac{27 - 3 + 1}{2}\rfloor = 13 nH=2273+1=13 n W = ⌊ 27 − 3 + 1 2 ⌋ = 13 n_W=\lfloor\frac{27 - 3 + 1}{2}\rfloor = 13 nW=2273+1=13。输出特征图尺寸为 13 × 13 × 256 13×13×256 13×13×256
  • 第三 - 五层卷积
    这三层卷积核大小均为 3 × 3 3×3 3×3,填充均为“same”,卷积核数量分别为 384 384 384 384 384 384 256 256 256。每层输出特征图尺寸均保持为 13 × 13 × 13×13× 13×13×相应通道数。
  • 第三层最大池化
    • 池化核:池化核大小为 3 × 3 3×3 3×3,步长 s = 2 s = 2 s=2
    • 输出尺寸 n H = ⌊ 13 − 3 + 1 2 ⌋ = 6 n_H=\lfloor\frac{13 - 3 + 1}{2}\rfloor = 6 nH=2133+1=6 n W = ⌊ 13 − 3 + 1 2 ⌋ = 6 n_W=\lfloor\frac{13 - 3 + 1}{2}\rfloor = 6 nW=2133+1=6。输出特征图尺寸为 6 × 6 × 256 6×6×256 6×6×256
  • 全连接层
    • 展平 6 × 6 × 256 6×6×256 6×6×256的特征图,得到 6 × 6 × 256 = 9216 6×6×256 = 9216 6×6×256=9216个神经元,连接到第一个全连接层( 9216 9216 9216个神经元)。
    • 第一个全连接层连接到第二个全连接层( 4096 4096 4096个神经元),第二个全连接层再连接到第三个全连接层( 4096 4096 4096个神经元)。
  • 输出层:第三个全连接层连接到输出层,通过Softmax函数输出 1000 1000 1000个类别的概率分布。

AlexNet 与 LeNet - 5 结构类似但规模更大,使用了 ReLU 激活函数。

VGG-16

在这里插入图片描述

  • 输入层:输入是尺寸为 224 × 224 × 3 224×224×3 224×224×3的图像,其中 224 × 224 224×224 224×224是图像的空间尺寸, 3 3 3表示通道数。
  • 卷积层与池化层
    • 第一组:使用 2 2 2 3 × 3 3×3 3×3、步长为 1 1 1、填充为“same”的卷积核,卷积核数量分别为 64 64 64,输出特征图尺寸为 224 × 224 × 64 224×224×64 224×224×64;接着是最大池化层,池化窗口 2 × 2 2×2 2×2、步长为 2 2 2,输出 112 × 112 × 64 112×112×64 112×112×64的特征图。
    • 第二组 2 2 2 3 × 3 3×3 3×3、步长为 1 1 1、填充为“same”的卷积核,卷积核数量为 128 128 128,输出 112 × 112 × 128 112×112×128 112×112×128的特征图;再经最大池化( 2 × 2 2×2 2×2,步长 2 2 2),输出 56 × 56 × 128 56×56×128 56×56×128的特征图。
    • 第三组 3 3 3 3 × 3 3×3 3×3、步长为 1 1 1、填充为“same”的卷积核,卷积核数量为 256 256 256,输出 56 × 56 × 256 56×56×256 56×56×256的特征图;经最大池化( 2 × 2 2×2 2×2,步长 2 2 2),输出 28 × 28 × 256 28×28×256 28×28×256的特征图。
    • 第四组 3 3 3 3 × 3 3×3 3×3、步长为 1 1 1、填充为“same”的卷积核,卷积核数量为 512 512 512,输出 28 × 28 × 512 28×28×512 28×28×512的特征图;经最大池化( 2 × 2 2×2 2×2,步长 2 2 2),输出 14 × 14 × 512 14×14×512 14×14×512的特征图。
    • 第五组 3 3 3 3 × 3 3×3 3×3、步长为 1 1 1、填充为“same”的卷积核,卷积核数量为 512 512 512,输出 14 × 14 × 512 14×14×512 14×14×512的特征图;经最大池化( 2 × 2 2×2 2×2,步长 2 2 2),输出 7 × 7 × 512 7×7×512 7×7×512的特征图。
  • 全连接层
    • 展平 7 × 7 × 512 7×7×512 7×7×512的特征图后连接到第一个全连接层,有 4096 4096 4096个神经元。
    • 第一个全连接层连接到第二个全连接层,同样有 4096 4096 4096个神经元。
  • 输出层:通过Softmax函数输出 1000 1000 1000个类别的概率分布。

VGG - 16结构简洁,通过堆叠多个小尺寸卷积核来加深网络。

ResNets

传统神经网络在加深层数时可能会出现梯度消失或梯度爆炸,以及性能退化(训练误差和测试误差增加)等问题。看看如下常规计算:
在这里插入图片描述
对于输入为 a [ l ] a^{[l]} a[l],经过两层处理后得到输出 a [ l + 2 ] a^{[l + 2]} a[l+2]。每一层由神经元组成, a [ l ] a^{[l]} a[l]先进入第一层得到 a [ l + 1 ] a^{[l + 1]} a[l+1],再进入第二层得到 a [ l + 2 ] a^{[l + 2]} a[l+2] 。计算过程如下:

  1. 输入 a [ l ] a^{[l]} a[l]首先进行线性变换: z [ l + 1 ] = W [ l + 1 ] a [ l ] + b [ l + 1 ] z^{[l + 1]} = W^{[l + 1]}a^{[l]} + b^{[l + 1]} z[l+1]=W[l+1]a[l]+b[l+1],其中 W [ l + 1 ] W^{[l + 1]} W[l+1]是权重矩阵, b [ l + 1 ] b^{[l + 1]} b[l+1]是偏置项。
  2. 对线性变换结果 z [ l + 1 ] z^{[l + 1]} z[l+1]应用ReLU激活函数: a [ l + 1 ] = g ( z [ l + 1 ] ) a^{[l + 1]} = g(z^{[l + 1]}) a[l+1]=g(z[l+1]) g g g代表ReLU函数。
  3. a [ l + 1 ] a^{[l + 1]} a[l+1]再进行第二次线性变换: z [ l + 2 ] = W [ l + 2 ] a [ l + 1 ] + b [ l + 2 ] z^{[l + 2]} = W^{[l + 2]}a^{[l + 1]} + b^{[l + 2]} z[l+2]=W[l+2]a[l+1]+b[l+2]
  4. z [ l + 2 ] z^{[l + 2]} z[l+2]应用ReLU激活函数得到输出: a [ l + 2 ] = g ( z [ l + 2 ] ) a^{[l + 2]} = g(z^{[l + 2]}) a[l+2]=g(z[l+2])

残差块

残差块是一种特殊的神经网络模块,引入了跳跃连接(图中上面的蓝色箭头)机制,使得网络能够学习输入和输出之间的残差映射,而不是直接学习复杂的恒等映射。
在这里插入图片描述
对于普通网络,理论上(绿色曲线)随着层数增加,训练误差应持续降低,但实际上(蓝色曲线),当层数增加到一定程度,训练误差反而上升,出现性能退化问题。

对于残差网络,随着层数增加,训练误差能够持续下降,避免了普通网络中的性能退化问题,使得网络可以更容易地训练更深的层次,解决普通深层神经网络中梯度消失和性能退化等问题。

本网络引入残差块,有:
在这里插入图片描述
输入 a [ l ] a^{[l]} a[l],直接到 a [ l + 1 ] a^{[l + 1]} a[l+1]线性函数处的输出。计算过程如下:

  1. 输入 a [ l ] a^{[l]} a[l]先进行第一次线性变换: z [ l + 1 ] = W [ l + 1 ] a [ l ] + b [ l + 1 ] z^{[l + 1]} = W^{[l + 1]}a^{[l]} + b^{[l + 1]} z[l+1]=W[l+1]a[l]+b[l+1]
  2. z [ l + 1 ] z^{[l + 1]} z[l+1]应用ReLU激活函数: a [ l + 1 ] = g ( z [ l + 1 ] ) a^{[l + 1]} = g(z^{[l + 1]}) a[l+1]=g(z[l+1])
  3. a [ l + 1 ] a^{[l + 1]} a[l+1]进行第二次线性变换: z [ l + 2 ] = W [ l + 2 ] a [ l + 1 ] + b [ l + 2 ] z^{[l + 2]} = W^{[l + 2]}a^{[l + 1]} + b^{[l + 2]} z[l+2]=W[l+2]a[l+1]+b[l+2]
  4. 跳跃连接(紫色箭头)将 a [ l ] a^{[l]} a[l] z [ l + 2 ] z^{[l + 2]} z[l+2]相加,然后对相加结果应用ReLU激活函数得到最终输出: a [ l + 2 ] = g ( z [ l + 2 ] + a [ l ] ) a^{[l + 2]} = g(z^{[l + 2]} + a^{[l]}) a[l+2]=g(z[l+2]+a[l])

1*1卷积

在这里插入图片描述
对于一个 6 × 6 × 32 6\times6\times32 6×6×32的张量,经过 1 × 1 × 32 1\times1\times32 1×1×32卷积和激活函数,相当于把32个通道的值相加后填入。 1 × 1 1\times1 1×1卷积从根本上可以看作是32个通道都应用了一个全连接神经网络。

使用大小为 1 × 1 1×1 1×1的卷积核时,当输入通道为1时, 1 × 1 1×1 1×1卷积对原特征的缩放操作;多通道时,对于输入特征图的每个区域,计算该区域与卷积核中的元素之和,还可引入激活函数。

在这里插入图片描述

输入为尺寸 28 × 28 × 192 28×28×192 28×28×192的特征图,使用了 32 32 32 1 × 1 1×1 1×1的卷积核对同一个区域进行卷积操作32次,卷积核大小为 1 × 1 × 192 1×1×192 1×1×192(因为输入通道数是 192 192 192),之后经过ReLU激活函数,输出特征图尺寸为 28 × 28 × 32 28×28×32 28×28×32,空间尺寸( 28 × 28 28×28 28×28)保持不变,通道数从 192 192 192减少到了 32 32 32,说明 1 × 1 1×1 1×1卷积可以在不改变特征图空间大小的情况下,对通道数进行降维调整,减少计算量和模型参数数量 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/965984.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

利用 IMU 估计人体关节轴向和位置 —— 论文推导

Title: 利用 IMU 估计人体关节轴向和位置 —— “Joint axis and position estimation from inertial measurement data by exploiting kinematic constraints” —— 论文推导 文章目录 I. 论文回顾II. 铰接关节的约束1. 铰接关节约束的原理2. 铰接关节约束的梯度3. 铰接关节约…

oracle ORA-27054报错处理

现象 在oracle执行expdp,rman备份,xtts的时候,由于没有足够的本地空间,只能使用到NFS的文件系统但有时候会出现如下报错 ORA-27054: NFS file system where the file is created or resides is not mounted with correct options根据提示信…

python模拟键盘输入(可视化界操作面)

因为受到一些限制,无法在输入框进行文本的复制粘贴,这时我们便需要模拟键盘输入一些文本内容,话不多说,直接上干货(文末附成品工具,需要自取,操作简单无脑,工具功能:将粘…

k8s部署go-fastdfs

前置环境:已部署k8s集群,ip地址为 192.168.10.1~192.168.10.5,总共5台机器。 1. 创建provisioner制备器(如果已存在,则不需要) 制备器的具体部署方式可参考我的上一篇文章: k8s部署rabbitmq-CSDN博客文章浏览阅读254次,点赞3次,收藏5次。k8s部署rabbitmqhttps://blo…

DeepSeek在FPGA/IC开发中的创新应用与未来潜力

随着人工智能技术的飞速发展,以DeepSeek为代表的大语言模型(LLM)正在逐步渗透到传统硬件开发领域。在FPGA(现场可编程门阵列)和IC(集成电路)开发这一技术密集型行业中,DeepSeek凭借其…

(一)DeepSeek大模型安装部署-Ollama安装

大模型deepseek安装部署 (一)、安装ollama curl -fsSL https://ollama.com/install.sh | sh sudo systemctl start ollama sudo systemctl enable ollama sudo systemctl status ollama(二)、安装ollama遇到网络问题,请手动下载 ollama-linux-amd64.tgz curl -L …

基于Flask的汽车质量投诉可视化分析系统的设计与实现

【FLask】基于Flask的汽车质量投诉可视化分析系统的设计与实现(完整系统源码开发笔记详细部署教程)✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 随着汽车市场的不断扩大和消费者维权意识的增强,汽车质量投诉问题日益…

计算机网络 应用层 笔记1(C/S模型,P2P模型,FTP协议)

应用层概述: 功能: 常见协议 应用层与其他层的关系 网络应用模型 C/S模型: 优点 缺点 P2P模型: 优点 缺点 DNS系统: 基本功能 系统架构 域名空间: DNS 服务器 根服务器: 顶级域…

Android studio 创建aar包给Unity使用

1、aar 是什么? 和 Jar有什么区别 aar 和 jar包 都是压缩包,可以使用压缩软件打开 jar包 用于封装 Java 类及其相关资源 aar 文件是专门为 Android 平台设计的 ,可以包含Android的专有内容,比如AndroidManifest.xml 文件 &#…

MySQL--loaddata infile、outfile into及mysqldump高效导入导出数据_mysql load outfile

【学习背景】 在日常工作和学习MySQL时,经常涉及到MySQL数据的导入和导出,分享几种常用又方便的方式: (1)MySQL命令行source命令 (3)语法into outfile和load data infile (3&#xf…

基于LMStudio本地部署DeepSeek R1

DeepSeek R1 DeepSeek R1是由DeepSeek团队开发的一款高性能AI推理模型,其开源版本包括完整的DeepSeek R1 671B权重,以及基于其蒸馏出的多个小型模型。 DeepSeek R1通过蒸馏技术将推理模式迁移到更小的模型中,显著提升了这些模型的推理能力。…

#渗透测试#批量漏洞挖掘#Splunk Enterprise for Windows 任意文件读取漏洞( CVE-2024-36991)

免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停…

读书笔记--分布式架构的异步化和缓存技术原理及应用场景

本篇是在上一篇的基础上,主要对分布式应用架构下的异步化机制和缓存技术进行学习,主要记录和思考如下,供大家学习参考。大家知道原来传统的单一WAR应用中,由于所有数据都在同一个数据库中,因此事务问题一般借助数据库事…

【提示词工程】探索大语言模型的参数设置:优化提示词交互的技巧

在与大语言模型(Large Language Model, LLM)进行交互时,提示词的设计和参数设置直接影响生成内容的质量和效果。无论是通过 API 调用还是直接使用模型,掌握模型的参数配置方法都至关重要。本文将为您详细解析常见的参数设置及其应用场景,帮助您更高效地利用大语言模型。 …

(七)QT——消息事件机制&绘图&文件

目录 前言 消息事件机制 (Event System) 绘图 (Graphics & Drawing) 绘图设备 Qt 提供的主要绘图设备 Qt 主要绘图设备的特点 各个绘图设备的详细介绍 文件处理 (File Handling) 总结 前言 QT 是一个非常强大的图形用户界面(GUI)开发框架&…

ChatGPT提问技巧:行业热门应用提示词案例-文案写作

ChatGPT 作为强大的 AI 语言模型,已经成为文案写作的得力助手。但要让它写出真正符合你需求的文案,关键在于如何与它“沟通”,也就是如何设计提示词(Prompt)。以下是一些实用的提示词案例,帮助你解锁 ChatG…

C++服务端开发注意事项总结

文章目录 一、架构设计1. 选择合适的网络框架2. 确定并发模型3. 模块化设计 二、性能优化1. 优化内存管理2. 减少锁的使用3. 优化网络通信 三、安全性1. 输入验证2. 使用安全的通信协议3. 防止拒绝服务攻击(DoS) 四、可维护性1. 日志记录2. 代码注释3. 单…

idea中git的简单使用

提交,推送直接合并 合到哪个分支就到先切到哪个分支

Kubernetes 中 BGP 与二层网络的较量:究竟孰轻孰重?

如果你曾搭建过Kubernetes集群,就会知道网络配置是一个很容易让人深陷其中的领域。在负载均衡器、服务通告和IP管理之间,你要同时应对许多变动的因素。对于许多配置而言,使用二层(L2)网络就完全能满足需求。但边界网关协议(BGP)—— 支撑互联网运行的技术 —— 也逐渐出…

LSSVM最小二乘支持向量机多变量多步光伏功率预测(Matlab)

代码下载:LSSVM最小二乘支持向量机多变量多步光伏功率预测(Matlab) LSSVM最小二乘支持向量机多变量多步光伏功率预测 一、引言 1.1、研究背景与意义 随着全球能源危机和环境问题的日益严重,可再生能源的开发利用成为了世界各国…