【漫话机器学习系列】083.安斯库姆四重奏(Anscombe‘s Quartet)

安斯库姆四重奏(Anscombe's Quartet)

1. 什么是安斯库姆四重奏?

安斯库姆四重奏(Anscombe's Quartet)是一组由统计学家弗朗西斯·安斯库姆(Francis Anscombe)1973 年 提出的 四组数据集。它们的均值、方差、回归直线、相关系数等统计量几乎相同,但当绘制成图表时却呈现出完全不同的分布形态

这个四重奏展示了数据可视化的重要性,表明仅凭统计数值不能全面反映数据的真实分布。


2. 数据集示例

安斯库姆的四个数据集如下,每个数据集包含 (x, y) 对

数据集xxx 值yyy 值
第一组10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 58.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68
第二组10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 59.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74
第三组10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 57.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73
第四组8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 86.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 5.56, 7.91, 6.89, 6.11

尽管这些数据集的均值、方差、相关系数、回归直线 近似相同,但它们的实际分布却大不相同。


3. 统计量分析

对每个数据集计算以下统计量,我们发现它们几乎相等

  • 均值
  • 方差
  • 相关系数
  • 回归直线

尽管统计量相同,但它们的数据分布和图形表现却大相径庭


4. 数据可视化

如果只看统计量,可能会认为四个数据集的分布类似。但当我们绘制散点图时,会看到完全不同的形态:

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# 加载 Anscombe's Quartet 数据集
anscombe = sns.load_dataset("anscombe")

# 创建 2x2 子图
fig, axes = plt.subplots(2, 2, figsize=(10, 8))
fig.suptitle("Anscombe's Quartet")

# 子集名称
datasets = ["I", "II", "III", "IV"]

# 遍历四个数据集并绘制散点图和回归直线
for i, ax in enumerate(axes.flatten()):
    data = anscombe[anscombe['dataset'] == datasets[i]]  # 修正筛选方式

    ax.scatter(data['x'], data['y'], label=f'Dataset {datasets[i]}', color='blue', edgecolor='k')
    ax.set_title(f"Dataset {datasets[i]}")

    # 计算回归直线
    m, b = np.polyfit(data['x'], data['y'], 1)
    ax.plot(data['x'], m * data['x'] + b, color='red', label="Regression Line")

plt.tight_layout()
plt.show()

运行结果

5. 观察四个数据集的不同

从图中可以看出:

  • 数据集 1:正常的线性回归数据分布。
  • 数据集 2:呈现非线性关系,回归直线并不能很好地描述数据趋势。
  • 数据集 3:大多数点与回归直线接近,但存在一个异常值(outlier)
  • 数据集 4:x 值恒定,数据呈现一条垂直线,回归模型毫无意义。

6. 重要性:统计数据 ≠ 数据特性

安斯库姆四重奏的核心思想是:

  1. 统计数值不能完全代表数据分布。必须配合数据可视化进行分析。
  2. 数据可视化可以揭示数据的模式,如线性关系、异常值、非线性分布等
  3. 异常值可能极大地影响回归分析,不能仅依赖统计量进行判断。

7. 结论

  • 仅依赖均值、方差、相关系数等统计数值,可能导致误导性的结论。
  • 进行数据分析时,应结合可视化手段(如散点图、直方图等),直观检查数据的分布。
  • 安斯库姆四重奏提醒我们,数据科学不只是数学统计,还包括数据探索与可视化。

8. 拓展:现代版安斯库姆四重奏

在 2017 年,Alberto Cairo 提出了“Datasaurus Dozen”,扩展了安斯库姆四重奏的思想。它展示了一组具有相同统计量但形态完全不同的数据集,其中包括:

  • 恐龙形状
  • 圆形分布
  • 星形分布
  • 水平线形分布

👉 核心思想仍然是:数据可视化远比仅依赖统计数值更重要。


9. 总结

主题说明
安斯库姆四重奏4 组数据集,统计特性相似但分布不同
均值、方差、相关系数统计量不能完全代表数据特征
可视化的重要性必须结合数据可视化(散点图等)
数据分布差异可能是非线性、异常值、特定形态
现代扩展“Datasaurus Dozen” 进一步说明数据可视化的重要性

🚀 数据分析不仅仅是计算统计量,数据可视化同样不可忽视!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/965891.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Axure设计教程:动态排名图(中继器实现)

一、开篇 在Axure原型设计中,动态图表是展示数据和交互效果的重要元素。今天,我们将学习如何使用中继器来创建一个动态的排名图,该图表不仅支持自动轮播,还可以手动切换,极大地增强了用户交互体验。此教程旨在提供一个…

MySQL视图索引操作

创建学生表; mysql> create table Student(-> Sno int primary key auto_increment,-> Sname varchar(30) not null unique,-> Ssex char(2) check (Ssex男 or Ssex女) not null,-> Sage int not null,-> Sdept varchar(10) default 计算机 not …

【正点原子K210连载】第六十七章 音频FFT实验 摘自【正点原子】DNK210使用指南-CanMV版指南

第六十七章 音频FFT实验 本章将介绍CanMV下FFT的应用,通过将时域采集到的音频数据通过FFT为频域。通过本章的学习,读者将学习到CanMV下控制FFT加速器进行FFT的使用。 本章分为如下几个小节: 32.1 maix.FFT模块介绍 32.2 硬件设计 32.3 程序设…

基于 Ollama+Docker+OpenWebUI 的本地化部署deepseek流程

搭建deepseek 安装Ollama Ollama官方下载地址 下载完成后双击打开Ollama进行安装,点击install 安装完成后系统会弹出下图提示代表安装成功并且已启动 验证安装 ollama -v安装完成后,cmd 打开命令行窗口,输入 “ollama -v” 测试,显示 olla…

Mac 部署Ollama + OpenWebUI完全指南

文章目录 💻 环境说明🛠️ Ollama安装配置1. 安装[Ollama](https://github.com/ollama/ollama)2. 启动Ollama3. 模型存储位置4. 配置 Ollama 🌐 OpenWebUI部署1. 安装Docker2. 部署[OpenWebUI](https://www.openwebui.com/)(可视化…

C#常用集合优缺点对比

先上结论&#xff1a; 在C#中&#xff0c;链表、一维数组、字典、List<T>和ArrayList是常见的数据集合类型&#xff0c;它们各有优缺点&#xff0c;适用于不同的场景。以下是它们的比较&#xff1a; 1. 一维数组 (T[]) 优点&#xff1a; 性能高&#xff1a;数组在内存中…

额外题目汇总2-链表

链表 1.24. 两两交换链表中的节点 力扣题目链接(opens new window) 给定一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后的链表。 你不能只是单纯的改变节点内部的值&#xff0c;而是需要实际的进行节点交换。 思路 使用虚拟头结点会很方便&#xff…

Nginx 中启用 Gzip 压缩以优化网页加载速度

&#x1f3e1;作者主页&#xff1a;点击&#xff01; Nginx-从零开始的服务器之旅专栏&#xff1a;点击&#xff01; &#x1f427;Linux高级管理防护和群集专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2025年2月7日17点14分 目录 1. 配置网页压缩 目的 …

《云夹:高效便捷的书签管理利器》

在信息爆炸的时代&#xff0c;我们每天都会浏览大量的网页&#xff0c;遇到许多有价值的内容。如何高效地管理这些网页书签&#xff0c;以便随时快速访问&#xff0c;成为了一个重要的问题。云夹作为一款出色的书签管理工具&#xff0c;为我们提供了完美的解决方案。 强大的功能…

学习数据结构(6)链表OJ

1.移除链表元素 解法一&#xff1a;&#xff08;我的做法&#xff09;在遍历的同时移除&#xff0c;代码写法比较复杂 解法二&#xff1a;创建新的链表&#xff0c;遍历原链表&#xff0c;将非val的节点尾插到新链表&#xff0c;注意&#xff0c;如果原链表结尾是val节点需要将…

MongoDB开发规范

分级名称定义P0核心系统需7*24不间断运行&#xff0c;一旦发生不可用&#xff0c;会直接影响核心业务的连续性&#xff0c;或影响公司名誉、品牌、集团战略、营销计划等&#xff0c;可能会造成P0-P2级事故发生。P1次核心系统这些系统降级或不可用&#xff0c;会间接影响用户使用…

设计模式.

设计模式 一、介绍二、六大原则1、单一职责原则&#xff08;Single Responsibility Principle, SRP&#xff09;2、开闭原则&#xff08;Open-Closed Principle, OCP&#xff09;3、里氏替换原则&#xff08;Liskov Substitution Principle, LSP&#xff09;4、接口隔离原则&am…

STM32的HAL库开发-通用定时器输入捕获实验

一、通用定时器输入捕获部分框图介绍 1、捕获/比较通道的输入部分(通道1) 首先设置 TIM_CCMR1的CC1S[1:0]位&#xff0c;设置成01&#xff0c;那么IC1来自于TI1&#xff0c;也就是说连接到TI1FP1上边。设置成10&#xff0c;那个IC1来自于TI2&#xff0c;连接到TI2FP1上。设置成…

JavaScript 复习

文章目录 语法前置语法组成引入位置内部引入外部引入 基础语法输出变量变量声明规则变量赋值变量的作用范围 数据类型强制类型转换强转为 Number强转为 Boolean强转为 String强转为 整数 | 浮点数 运算符流程控制隐式转换函数常用内置对象String 对象Array 数组对象Math 数学对…

【C】链表算法题5 -- 相交链表

leetcode链接https://leetcode.cn/problems/intersection-of-two-linked-lists/description/https://leetcode.cn/problems/intersection-of-two-linked-lists/description/ 题目描述 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节…

蓝桥杯准备 【入门3】循环结构

素数小算法&#xff08;埃氏筛&&欧拉筛&#xff09; 以下四段代码都是求20以内的所有素数 1.0版求素数 #include<iostream> using namespace std;int main() {int n 20;for(int i2;i<n;i){int j0;for(j2;j<i;j)//遍历i{if(i%j0){break;}}if(ij){cout&l…

寒假2.6--SQL注入之布尔盲注

知识点 原理&#xff1a;通过发送不同的SQL查询来观察应用程序的响应&#xff0c;进而判断查询的真假&#xff0c;并逐步推断出有用的信息 适用情况&#xff1a;一个界面存在注入&#xff0c;但是没有显示位&#xff0c;没有SQL语句执行错误信息&#xff0c;通常用于在无法直接…

Servlet笔记(下)

HttpServletRequest对象相关API 获取请求行信息相关(方式,请求的url,协议及版本) | API | 功能解释 | | ----------------------------- | ------------------------------ | | StringBuffer getRequestURL(); | 获取客户端…

QQ自动发送消息

QQ自动发送消息 python包导入 import time import pandas as pd import pyautogui import pyperclip图像识别函数封装 本程序使用pyautogui模块控制鼠标和键盘来实现QQ自动发送消息&#xff0c;因此必须得到需要点击位置的坐标&#xff08;当然也可以在程序中将位置写死&…

5.1计算机网络基本知识

5.1.1计算机网络概述 目前&#xff0c;三网融合(电信网络、有线电视网络和计算机网络)和宽带化是网络技术的发展的大方向&#xff0c;其应用广泛&#xff0c;遍及智能交通、环境保护、政府工作、公共安全、平安家居等多个领域&#xff0c;其中发展最快的并起到核心作用的则是计…