python学opencv|读取图像(五十三)原理探索:使用cv.matchTemplate()函数实现最佳图像匹配

【1】引言

前序学习进程中,已经探索了使用cv.matchTemplate()函数实现最佳图像匹配的技巧,并且成功对两个目标进行了匹配。

相关文章链接为:python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配-CSDN博客

实际上,我们在这篇文章中重点体会了匹配效果,却没有真正剖析代码背后的运行逻辑。今天这篇文章的目标就是对代码背后逻辑稍微追溯一下。

【2】官网教程

【2.1】cv2.matchTemplate()函数

点击下方链接,直达cv2.matchTemplate()函数官网链接:

图1 cv2.matchTemplate()函数官网说明

图1所示的cv2.matchTemplate()函数官网说明中,有三处做了标记,它们彼此交织在一起。需要解读:

a.待匹配的大图像I大小为W X H,使用的模板T像素大小为w x h,获得的匹配效果R对应的的矩阵大小为(W-w+1,H-h+1);

b.使用不同的匹配方法后,再用minMaxLoc函数读取最佳匹配效果对应的左上角坐标时,有时候取最小值,如TM_SQDIFF,有时候取最大值,如TM_CCORR和TM_CCOEFF。

c.解读匹配方法请看第2.2节。

【2.2】cv2.matchTemplate()函数

点击链接,直达函数对匹配方法的解读:OpenCV: Object Detection

在这个页面,会看到不同的函数说明:

图2 匹配方法的数学公式

由图2可见,TM_SQDIFF采用的是减法计算,而TM_CCORR和TM_CCOEFF采用的乘法计算,所以相似度高的时候,TM_SQDIFF方法的计算值往往会接近0,而TM_CCORR和TM_CCOEFF方法就会在因为平方而取得更大的值。

所以“用minMaxLoc函数读取最佳匹配效果对应的左上角坐标时,有时候取最小值,如TM_SQDIFF,有时候取最大值,如TM_CCORR和TM_CCOEFF”就获得了解释。

【3】代码测试

【3.1】代码回顾

首先直接引用前一篇文章的完整代码:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块
 
# 读取图片
srcm = cv.imread('srcm.png') #读取图像srcx.png
srcg = cv.imread('srcg.png') #读取图像srcp.png
srcc = cv.imread('srcc.png') #读取图像srcp.png
rows,cols,cans=srcg.shape #读取图像属性
rowsc,colsc,cansc=srcc.shape #读取图像属性

#匹配结果
results=cv.matchTemplate(srcm,srcg,cv.TM_CCORR_NORMED)
results1=cv.matchTemplate(srcm,srcc,cv.TM_CCORR_NORMED)

#取值
minValue,maxValue,minLoc,maxLoc=cv.minMaxLoc(results)
minValuec,maxValuec,minLocc,maxLocc=cv.minMaxLoc(results1)

#取最大坐标
resultPoint1=maxLoc
print("resultPoint1=",resultPoint1)
 
#取最大坐标
resultPoint2=maxLocc
print("resultPoint2=",resultPoint2)
 
#定义新坐标
resultPoint3=(resultPoint1[0]+cols,resultPoint1[1]+rows)
print("resultPoint3=",resultPoint3)
 
#定义新坐标
resultPoint4=(resultPoint2[0]+colsc,resultPoint2[1]+rowsc)
print("resultPoint4=",resultPoint4)

#作标记
cv.circle(srcm,(250,250),30,(0,255,0))
cv.rectangle(srcm,resultPoint1,resultPoint3,(0,255,0),2)
cv.rectangle(srcm,resultPoint2,resultPoint4,(200,180,55),2)
 
# 显示结果
cv.imshow('srcm ', srcm)
cv.imshow('srcg ', srcg)
cv.imshow('srcc ', srcc)
cv.imwrite('srcgc.png',srcm)
 
#窗口控制
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

待匹配的图像I为:

图3 待匹配图像I:srcm.png

图4 模板T1 srcg.png

图5 模板T2 srcc.png

图6 匹配效果 srcgc.png  

上述代码全部使用了cv2.TM_CCORR_NORMED方法,所以需要调用最大值来代表最佳匹配效果的左上角坐标。

未验证不用方法对应最佳匹配效果的左上角坐标,现在应增加匹配方法。

【3.2】代码扩展

在直接引用前一篇文章的完整代码的基础上,不仅要增加匹配方法,还要显示出匹配结果。

#匹配计算
results=cv.matchTemplate(srcm,srcg,cv.TM_SQDIFF_NORMED) #TM_SQDIFF匹配方法
results1=cv.matchTemplate(srcm,srcc,cv.TM_CCORR_NORMED) #TM_CCORR匹配方法
print("result=",results) #输出匹配结果
print("result1=",results1) #输出匹配结果

代码先后使用了TM_SQDIFF和TM_CCORR两种方法,并且要求输出了匹配结果。

然后读取了调用minMaxLoc()函数对结果渠道的各个参数值:

#取值
minValue,maxValue,minLoc,maxLoc=cv.minMaxLoc(results)
minValuec,maxValuec,minLocc,maxLocc=cv.minMaxLoc(results1)
print("result.minValue=",minValue)
print("result1.minValuec=",minValuec)
print("result.maxValue=",maxValue)
print("result1.maxValuec=",maxValuec)
print("result.minLoc=",minLoc)
print("result1.minLocc=",minLocc)
print("result.maxLoc=",maxLoc)
print("result1.maxLocc=",maxLocc)

然后根据先前的分析思路,取最佳匹配矩阵的左上角坐标。

这时候TM_SQDIFF取最小值,TM_CCORR方法取最大值,之后还要叠加模板的大小,来画出整个匹配区域:

#取最小坐标
resultPoint1=minLoc
print("resultPoint1=",resultPoint1)

#取最大坐标
resultPoint2=maxLocc
print("resultPoint2=",resultPoint2)

#定义新坐标
resultPoint3=(resultPoint1[0]+cols,resultPoint1[1]+rows)
print("resultPoint3=",resultPoint3)

#定义新坐标
resultPoint4=(resultPoint2[0]+colsc,resultPoint2[1]+rowsc)
print("resultPoint4=",resultPoint4)

之后为了突出匹配点,以最小和最大坐标Wie圆心,分别绘制半径为10和20的圆形:

#作标记
cv.circle(srcm,(minLoc),10,(255,255,0))
cv.circle(srcm,(maxLoc),20,(255,255,0))
cv.circle(srcm,(minLocc),10,(0,255,255))
cv.circle(srcm,(maxLocc),20,(0,255,255))
cv.circle(srcm,(250,250),30,(0,255,0))
cv.rectangle(srcm,resultPoint1,resultPoint3,(0,255,0),2)
cv.rectangle(srcm,resultPoint2,resultPoint4,(200,180,55),2)

然后输出所有图像:

# 显示结果
cv.imshow('srcm ', srcm)
cv.imwrite('srcgcw.png',srcm)
#窗口控制
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

代码运行后,获得的匹配效果为:

图7 匹配效果srcgcw.png

由图7可见,TM_SQDIFF取最小值,TM_CCORR方法取最大值获得的最佳匹配图像实现了预期效果。

【4】细节说明

上述3.2节读取到的部分匹配结果矩阵为:

 图8 匹配结果矩阵

由图8可见,每个矩阵内部给出了很多值,这表明在矩阵内部,图像和模板是按照像素点逐个进行比对匹配。

【5】总结

掌握了python+opencv调用使用cv.matchTemplate()函数实现最佳图像匹配的执行原理和过程。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/965585.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C#面试常考随笔12:游戏开发中常用的设计模式【C#面试题(中级篇)补充】

C#面试题(中级篇),详细讲解,帮助你深刻理解,拒绝背话术!-CSDN博客 简单工厂模式 优点: 根据条件有工厂类直接创建具体的产品 客户端无需知道具体的对象名字,可以通过配置文件创建…

动手学图神经网络(9):利用图神经网络进行节点分类 WeightsBiases

利用图神经网络进行节点分类Weights&Biases 引言 在本篇博客中,将深入探讨如何使用图神经网络(GNNs)来完成节点分类任务。以 Cora 数据集为例,该数据集是一个引用网络,节点代表文档,推断每个文档的类别。同时,使用 Weights & Biases(W&B)来跟踪实验过程和…

React 低代码项目:项目创建

Date: January 29, 2025 项目创建 思路: 使用 Create-React-App 创建 React 项目使用 Vite 创建 React 项目使用 eslint prettier husty 等,制定编码规则 创建项目 注:在这之前,推荐 node 版本:node/18.20.6 &#…

网络工程师 (21)网络的性能

一、速率(数据率或比特率) 定义:数据在数字信道上传送的速率,通常以比特每秒(bps)为单位。常见的速率单位还有千比特每秒(kbit/s)、兆比特每秒(Mbit/s)和吉比…

VMware Win10下载安装教程(超详细)

《网络安全自学教程》 从MSDN下载系统镜像,使用 VMware Workstation 17 Pro 安装 Windows 10 consumer家庭版 和 VMware Tools。 Win10下载安装 1、下载镜像2、创建虚拟机3、安装操作系统4、配置系统5、安装VMware Tools 1、下载镜像 到MSDN https://msdn.itellyou…

开源智慧园区管理系统对比其他十种管理软件的优势与应用前景分析

内容概要 在当今数字化快速发展的时代,园区管理软件的选择显得尤为重要。而开源智慧园区管理系统凭借其独特的优势,逐渐成为用户的新宠。与传统管理软件相比,它不仅灵活性高,而且具有更强的可定制性,让各类园区&#…

Chapter 4-1. Troubleshooting Congestion in Fibre Channel Fabrics

This chapter covers the following topics: 本章包括以下内容: Congestion troubleshooting methodology and workflow. Hints and tips for troubleshooting congestion. Cisco MDS NX-OS commands for troubleshooting congestion. Case studies demonstrating troubleshoo…

无界构建微前端?NO!NO!NO!多系统融合思路!

文章目录 微前端理解1、微前端概念2、微前端特性3、微前端方案a、iframeb、qiankun --> 使用比较复杂 --> 自己写对vite的插件c、micro-app --> 京东开发 --> 对vite支持更拉跨d、EMP 方案--> 必须使用 webpack5 --> 很多人感觉不是微前端 --> 去中心化方…

4G核心网的演变与创新:从传统到虚拟化的跨越

4G核心网 随着移动通信技术的不断发展,4G核心网已经经历了从传统的硬件密集型架构到现代化、虚拟化网络架构的重大转型。这一演变不仅提升了网络的灵活性和可扩展性,也为未来的5G、物联网(LOT)和边缘计算等技术的发展奠定了基础。…

PL/SQL Developer如何连接Oracle数据库(汉化)

博主主页:【南鸢1.0】 本文专栏: database 目录 简介 准备工作 一、下载PLSQL Developer 二、解压 三、安装PLSQL Developer 1、找到plsqldev1402x64.msi 2、接受协议【Next】 3、安装路径 4、选择安装方式 5、点击Install等待安装 6、首次打开 7、输入…

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之修改密码和个人资料

🧸安清h:个人主页 🎥个人专栏:【Spring篇】【计算机网络】【Mybatis篇】 🚦作者简介:一个有趣爱睡觉的intp,期待和更多人分享自己所学知识的真诚大学生。 目录 🎃1.修改密码 -持久…

OpenAI 实战进阶教程 - 第四节: 结合 Web 服务:构建 Flask API 网关

目标 学习将 OpenAI 接入 Web 应用,构建交互式 API 网关理解 Flask 框架的基本用法实现 GPT 模型的 API 集成并返回结果 内容与实操 一、环境准备 安装必要依赖: 打开终端或命令行,执行以下命令安装 Flask 和 OpenAI SDK: pip i…

oracle 基础语法复习记录

Oracle SQL基础 因工作需要sql能力,需要重新把sql这块知识重新盘活,特此记录学习过程。 希望有新的发现。加油!20250205 学习范围 学习SQL基础语法 掌握SELECT、INSERT、UPDATE、DELETE等基本操作。 熟悉WHERE、GROUP BY、ORDER BY、HAVIN…

【Day32 LeetCode】动态规划DP Ⅴ 完全背包

一、动态规划DP Ⅴ 完全背包 1、完全背包理论 有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和…

数字人|通过语音和图片来创建高质量的视频

简介 arXiv上的计算机视觉领域论文: AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animation AniPortrait:照片级真实感肖像动画的音频驱动合成 核心内容围绕一种新的人像动画合成框架展开。 研究内容 提出 AniPortrait 框架&a…

Leetcode—922. 按奇偶排序数组 II【简单】

2025每日刷题&#xff08;207&#xff09; Leetcode—922. 按奇偶排序数组 II 实现代码 class Solution { public:vector<int> sortArrayByParityII(vector<int>& nums) {for(int i 0, j 1; i < nums.size() - 1; i 2) {// 前奇后偶if(nums[i] % 2) {w…

Redis单线程架构

⭐️前言⭐️ 本小节主要围绕Redis的单线程模型展开 &#x1f349;欢迎点赞 &#x1f44d; 收藏 ⭐留言评论 &#x1f349;博主将持续更新学习记录收获&#xff0c;友友们有任何问题可以在评论区留言 &#x1f349;博客中涉及源码及博主日常练习代码均已上传GitHub &#x1f4…

NacosRce到docker逃逸实战

NacosRce到docker逃逸实战 1、Nacos Derby Rce打入内存马 这个漏洞的原理大家应该都知道&#xff0c; 2.3.2 < Nacos < 2.4.0版本默认derby接口未授权访问&#xff0c;攻击者可利用未授权访问执行SQL语句加载构造恶意的JAR包导致出现远程代码执行漏洞。 在日常的漏洞挖…

求解大规模单仓库多旅行商问题(LS-SDMTSP)的成长优化算法(Growth Optimizer,GO),MATLAB代码

一、问题定义 大规模单仓库多旅行商问题&#xff08;Large-Scale Single-Depot Multi-Traveling Salesman Problem&#xff0c;简称 LS-SDMTSP&#xff09;是组合优化领域中极具挑战性的经典问题。假设存在一个单一仓库&#xff0c;它既是所有旅行商的出发地&#xff0c;也是最…

安装和卸载RabbitMQ

我的飞书:https://rvg7rs2jk1g.feishu.cn/docx/SUWXdDb0UoCV86xP6b3c7qtMn6b 使用Ubuntu环境进行安装 一、安装Erlang 在安装RabbitMQ之前,我们需要先安装Erlang,RabbitMQ需要Erlang的语言支持 #安装Erlang sudo apt-get install erlang 在安装的过程中,会弹出一段信息,此…