最大矩阵的和
真题目录: 点击去查看
E 卷 100分题型
题目描述
给定一个二维整数矩阵,要在这个矩阵中选出一个子矩阵,使得这个子矩阵内所有的数字和尽量大,我们把这个子矩阵称为和最大子矩阵,子矩阵的选取原则是原矩阵中一块相互连续的矩形区域。
输入描述
输入的第一行包含2个整数n, m(1 <= n, m <= 10),表示一个n行m列的矩阵,下面有n行,每行有m个整数,同一行中,每2个数字之间有1个空格,最后一个数字后面没有空格,所有的数字的在[-1000, 1000]之间。
输出描述
输出一行一个数字,表示选出的和最大子矩阵内所有的数字和。
用例1
输入
3 4
-3 5 -1 5
2 4 -2 4
-1 3 -1 3
输出
20
说明
一个3*4的矩阵中,后面3列的子矩阵求和加起来等于20,和最大。
题解
思路:将二维的问题转换为一维的问题。
- 转换思路:最终选择的矩阵行数肯定是[1, n]。枚举出选择任意行的情况。选择多行时将同一列进行相加变成一行。
- 问题就变成了在一行中求最大连续子数组了。最大子数组的状态转移方程:dp[i] = max(dp[i-1], 0) + nums[i]。
- 记录每种情况下的连续子数组和最大值,其中的最大值就是结果。
c++
#include <iostream>
#include <vector>
#include <climits>
using namespace std;
#define MAX(a, b) ((a) > (b) ? (a) : (b))
int getResult(int n, int m, vector<vector<int>>& matrix);
int maxSubArraySum(vector<int>& nums);
vector<int> matrixZip(int rowFrom, int rowTo, int cols, vector<vector<int>>& matrix);
int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> matrix(n, vector<int>(m));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> matrix[i][j];
}
}
cout << getResult(n, m, matrix) << endl;
return 0;
}
int getResult(int n, int m, vector<vector<int>>& matrix) {
int ans = INT_MIN;
for (int i = 0; i < n; i++) {
ans = MAX(ans, maxSubArraySum(matrix[i])); // 单行最大子数组和
for (int j = i + 1; j < n; j++) {
vector<int> compressed = matrixZip(i, j, m, matrix);
ans = MAX(ans, maxSubArraySum(compressed)); // 多行子矩阵最大和
}
}
return ans;
}
int maxSubArraySum(vector<int>& nums) {
int res = nums[0];
int dp = nums[0];
for (size_t i = 1; i < nums.size(); i++) {
dp = MAX(dp, 0) + nums[i];
res = MAX(res, dp);
}
return res;
}
vector<int> matrixZip(int rowFrom, int rowTo, int cols, vector<vector<int>>& matrix) {
vector<int> zip(cols, 0);
for (int c = 0; c < cols; c++) {
for (int r = rowFrom; r <= rowTo; r++) {
zip[c] += matrix[r][c];
}
}
return zip;
}
JAVA
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int[][] matrix = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
matrix[i][j] = sc.nextInt();
}
}
System.out.println(getResult(n, m, matrix));
}
public static int getResult(int n, int m, int[][] matrix) {
ArrayList<Integer> dp = new ArrayList<>();
for (int i = 0; i < n; i++) {
dp.add(maxSubArraySum(matrix[i])); // 一行子矩阵最大和
for (int j = i + 1; j < n; j++) {
dp.add(maxSubArraySum(matrixZip(Arrays.copyOfRange(matrix, i, j + 1)))); // 多行子矩阵最大和
}
}
return dp.stream().max((a, b) -> a - b).orElse(0); // 求出最大和
}
// 最大子数组和求解
public static int maxSubArraySum(int[] nums) {
int[] dp = new int[nums.length];
int res = dp[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
dp[i] = Math.max(dp[i - 1], 0) + nums[i];
res = Math.max(res, dp[i]);
}
return res;
}
// 多行子矩阵,压缩为一行子数组
public static int[] matrixZip(int[][] matrix) {
int cols = matrix[0].length;
int rows = matrix.length;
int[] zip = new int[cols];
for (int c = 0; c < cols; c++) {
for (int r = 0; r < rows; r++) {
zip[c] += matrix[r][c];
}
}
return zip;
}
}
Python
# 输入获取
n, m = map(int, input().split())
matrix = [list(map(int, input().split())) for i in range(n)]
# 最大子数组和求解
def maxSubArraySum(nums):
dp = [0 for i in range(len(nums))]
res = dp[0] = nums[0]
for i in range(1, len(nums)):
dp[i] = max(dp[i - 1], 0) + nums[i]
res = max(res, dp[i])
return res
# 将多行子矩阵,压缩为一维数组
def matrixZip(matrix):
cols = len(matrix[0])
rows = len(matrix)
zip = [0 for i in range(cols)]
for c in range(cols):
for r in range(rows):
zip[c] += matrix[r][c]
return zip
# 算法入口
def getResult(n, m, matrix):
dp = []
for i in range(n):
dp.append(maxSubArraySum(matrix[i]))
for j in range(i + 1, n):
dp.append(maxSubArraySum(matrixZip(matrix[i:j + 1])))
dp.sort()
return dp[-1]
# 算法调用
print(getResult(n, m, matrix))
JavaScript
/* JavaScript Node ACM模式 控制台输入获取 */
const readline = require("readline");
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout,
});
let lines = [];
let n, m;
rl.on("line", (line) => {
lines.push(line);
// 输入第一行时,提取出m、n
if (lines.length === 1) {
[n, m] = lines[0].split(" ").map((ele) => parseInt(ele));
}
// 输入第一行后,再输入n行时,则开始启动算法程序
if (lines.length - 1 === n) {
// 干掉第一行输入,即lines中存储的全是就是matrix要素
lines.shift();
// matrix是算法程序的入参二维数组
let matrix = [];
// 将多行输入的matrix要素提取出来存到二维数组中
lines.forEach((line) => {
matrix.push(
line
.split(" ")
.map((ele) => parseInt(ele))
.slice(0, m)
);
});
// 调用算法程序
console.log(maxSubMatrixSum(matrix));
// 将输入归0,重新接收下一轮
lines.length = 0;
}
});
function maxSubMatrixSum(matrix) {
let dp = [];
for (let i = 0; i < matrix.length; i++) {
dp.push(maxSubArraySum(matrix[i]));
for (let j = i + 1; j < matrix.length; j++) {
dp.push(maxSubArraySum(matrixZip(matrix.slice(i, j + 1))));
}
}
return dp.sort((a, b) => b - a)[0];
}
function maxSubArraySum(nums) {
let dp = new Array(nums.length);
let result = (dp[0] = nums[0]);
for (let i = 1; i < nums.length; i++) {
dp[i] = Math.max(dp[i - 1], 0) + nums[i];
result = Math.max(result, dp[i]);
}
return result;
}
function matrixZip(matrix) {
let cols = matrix[0].length;
let rows = matrix.length;
let zip = new Array(cols).fill(0);
for (let c = 0; c < cols; c++) {
for (let r = 0; r < rows; r++) {
zip[c] += matrix[r][c];
}
}
return zip;
}
Go
package main
import (
"bufio"
"fmt"
"math"
"os"
"strconv"
"strings"
)
// 获取最大子矩阵和
func getResult(n, m int, matrix [][]int) int {
ans := math.MinInt32
for i := 0; i < n; i++ {
ans = max(ans, maxSubArraySum(matrix[i])) // 单行最大子数组和
for j := i + 1; j < n; j++ {
compressed := matrixZip(i, j, m, matrix)
ans = max(ans, maxSubArraySum(compressed)) // 多行子矩阵最大和
}
}
return ans
}
// 最大子数组和(Kadane's Algorithm)
func maxSubArraySum(nums []int) int {
res, dp := nums[0], nums[0]
for i := 1; i < len(nums); i++ {
dp = max(dp, 0) + nums[i]
res = max(res, dp)
}
return res
}
// 多行子矩阵,压缩为一行
func matrixZip(rowFrom, rowTo, cols int, matrix [][]int) []int {
zip := make([]int, cols)
for c := 0; c < cols; c++ {
for r := rowFrom; r <= rowTo; r++ {
zip[c] += matrix[r][c]
}
}
return zip
}
// 获取最大值
func max(a, b int) int {
if a > b {
return a
}
return b
}
func main() {
// 读取输入
scanner := bufio.NewScanner(os.Stdin)
scanner.Scan()
line := scanner.Text()
parts := strings.Fields(line)
n, _ := strconv.Atoi(parts[0])
m, _ := strconv.Atoi(parts[1])
// 读取矩阵
matrix := make([][]int, n)
for i := 0; i < n; i++ {
matrix[i] = make([]int, m)
scanner.Scan()
rowValues := strings.Fields(scanner.Text())
for j := 0; j < m; j++ {
matrix[i][j], _ = strconv.Atoi(rowValues[j])
}
}
// 计算结果并输出
fmt.Println(getResult(n, m, matrix))
}