Games104——游戏引擎Gameplay玩法系统:基础AI

这里写目录标题

  • 寻路/导航系统Navigation
    • Walkable Area
      • Waypoint Network
      • Grid
      • Navigation Mesh(寻路网格)
      • Sparse Voxel Octree
    • Path Finding
      • Dijkstra Algorithm迪杰斯特拉算法
      • A Star(A*算法)
    • Path Smoothing
  • Steering系统
  • Crowd Simulation群体模拟
    • 群体模拟模型
      • 微观方法:基于规则的模型
      • 宏观方法
      • 综合方法
    • 避免碰撞
      • 基于力的模型
      • 基于速度的模型–速度障碍法
  • Sensing环境感知
  • 经典决策算法
    • 有限状态机(Finite State Machine)
      • 层次有限状态机(HFSM)
    • 行为树(Behavior Tree)
      • 可执行结点
      • 控制结点
      • 黑板(Blackboard)

AI分为16、17两节课讲,大纲如下:
在这里插入图片描述

寻路/导航系统Navigation

  • 基本思路:
    在这里插入图片描述

Walkable Area

需要让ai知道哪些部分可以通过(包含走路、跳、翻越攀爬、载具可过等不同情况,还要考虑物理碰撞)。

其表达方式有Waypoint Network、Grid、Navigation Mesh、Sparse Voxel Octree(空间八叉树)等。每种方式都尤其优缺点,因此游戏经常使用多种方式结合。

Waypoint Network

早期游戏引擎用的多,通过设置道路关键点(如道路两边)并用算法插值关键点得到路网,寻路时先找到距离当前位置和目标位置最近的路网点,再通过路网连通(就像坐地铁一样),如下图:
在这里插入图片描述

优点是好实现、效率高,缺点是不方便动态更新、总走路中间

Grid

地图网格化,类似光栅化,如下图:
在这里插入图片描述

优点是便于动态更新,缺点是精确度取决于格子大小、存储空间浪费、效率比较低、难以表达层叠结构(比如桥)

Navigation Mesh(寻路网格)

现代游戏引擎最普遍的方法,即把地图上所有可通行的区域连起来(用凸多边形),主要用物理碰撞与预测路线,既可以解决路线僵硬问题,又能应对层叠结构
在这里插入图片描述
在这里插入图片描述

优点是支持3d、精确、灵活、动态,缺点是生成Navigation Mesh的算法非常复杂,并且只能“寻路”,不能飞机3d空间导航

  • 怎么生成Navigation Mesh呢?
    现在基本都是自动生成,用一些开源库如recast,voxelization后去计算可通行区域;然后再通过计算离边缘最近的edge voxel,得到一个类似距离场的东西;
    在这里插入图片描述
    再找到每个区域距离边缘最远的中心点,用洪水算法向外扩散,直到覆盖所有区域,在通过进一步处理(比如连通区域变为凸多边形之类,比较复杂),这就是我们的生成的Mesh了
    在这里插入图片描述

  • Polygon Flag
    通过地形标签生成不同区域的mesh
    在这里插入图片描述

  • Tile
    那如果地图在动态变化怎么办,比如路障被用户打掉了。可以使用Tile把地图分块,部分地图更新后只需要重新计划该块tile即可
    在这里插入图片描述
    把空间分成一个个Tile,当Tile改变时只需要更新这个Tile即可

  • Off Mesh Link
    建立一些手动的连接点和连接线可以让寻路变得更加复杂,增强拓展性
    在这里插入图片描述

Sparse Voxel Octree

把空间体素化,通过求交导航。可以表达3d空间的导航,主要用于航空航天游戏。但缺点是存储消耗大
通过八叉树划分空间
在这里插入图片描述

Path Finding

以上每种方式都可以把各个几何元素的中心连接为点图,只要找到最短路径即可。
在这里插入图片描述
所谓寻路问题主要就是解决两个问题:

  1. 找到一条起点到终点的道路
  2. 尽可能的少走弯路

这个过程也有几种算法,比如经典的:

深度优先搜索(Depth-First Search):找到一个分支一直走,如果没有路就退回来,直到走到终点为止(时间换空间)

广度优先搜索(Breadth-First Search):每一个step都向全部子节点扩散一步,直到找到终点(空间换时间)
但以上两种方式都比较费,并且不能计算加权最短路径,所以还需要更多算法帮助:
在这里插入图片描述

Dijkstra Algorithm迪杰斯特拉算法

可以解决有权图中最短路径问题,参考这个大佬的文章:图论:Dijkstra算法——最详细的分析,图文并茂,一次看懂!
截图自大佬博客:
在这里插入图片描述

但是对于游戏来说,有时候并不需要真的“最优路径”,只要按照大致方向走就行了,所以引入了下边的A Star算法

A Star(A*算法)

用的最普遍,是一种启发式算法,通过有选择的节点搜索找到最短路径,因此更快,常用于游戏或机器人导航。
原理是通过计算一个代价函数:f = g(从原点已经走过的路程的代价,一般累计路程距离) + h(到终点还有多远的代价,一般用欧拉距离或x+y),来逐步寻找最优下一步的路径(按照网格或mesh的划分),原理有些类似梯度下降。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

Path Smoothing

把无效的运动尽可能踢掉

Funnel Algorithm烟囱算法:类似于人走路时对道路的感知,如下图:
在这里插入图片描述
在这里插入图片描述

从起始点看向下一个三角形,视野卡在三角形两端,如果能全部在视野中,就继续看下一个三角形,更新视野,直到某一个三角形被挡住一部分时,左边被挡沿左视野边走,右边被挡沿右视野边走;
走到被卡视野的遮挡点后,再重新进行上述过程;
如果迭代过程中发现终点就在视野里时则直接向终点走。

Steering系统

载具的移动受限于它们的移动能力:油门、刹车、转向等,所以经常会在寻路中被障碍物卡死

steer behavior:

  • Seek/Flee:包括 追踪、巡逻、流场跟随、路径跟随
  • 速度匹配:快到目标点减速,减速到速度为0时刚好到达目标点,比如火箭发射会用到
  • 一致性:角速度的加速和减速,比如npc看向主角
    在这里插入图片描述

Crowd Simulation群体模拟

现在的游戏城市环境交互等越来越丰富,那群体模拟必不可少,比如一群鸽子突然飞走,一群npc四散逃跑等。群体模拟需要做到:避免碰撞、成群的来回移动(Swarming)、编队运动(motion in formation)

群体模拟模型

群体模拟模型大致有三种:
微观方法(Microscopic):自底向上的定义每个个体的行为,合起来就组成了群体行为。
宏观方法(Macroscopic):定义群体宏观的运动趋势,所有个体按照该趋势移动。
综合方法(Mesoscopic):将群体分组。既有宏观的趋势,也有微观的个体行为。

微观方法:基于规则的模型

比如动物的群体动力学,用简单规则控制每个个体的运动:

  • 分离(Separation):避开自己的所有“邻居”(斥力)
  • 凝聚性(Cohesion:朝向群体的“质心”移动
  • 一致性(Alignment):和邻近的对象朝向同一个方向移动

在这里插入图片描述

好处是规则简单,坏处是宏观上是不可控且不怎么受人影响。

宏观方法

从宏观的角度模拟人群的运动,通过设置可通行区域和有势场或流体力学的控制运动,类似粒子系统运动?
在这里插入图片描述

综合方法

结合了宏观和微观方法,把群体分为很多小组,每组分别运动,同时组里的个体也有一点自己的区别。比如红警里圈出一群小兵运动时就是这样。
在这里插入图片描述

避免碰撞

这部分如果给ai做效率非常低,所以需要用一个碰撞系统帮助ai决策

基于力的模型

相当于使用距离场给障碍物增加一个反向力
在这里插入图片描述

好处:可以被拓展去模拟更慌乱的人群的行为。
坏处:类似于物理模拟,模拟的步骤应该足够小。

基于速度的模型–速度障碍法

类似人眼处理方式:当两个物体在同一速度线上行走,就都靠左边避让一点。
在这里插入图片描述

当参与的对象不止两个时,A 对 B 的避让可能又会影响到 C。所有需要做一些优化:Optimal Reciprocal
Velocity Avoidance(ORVA)。其数学复杂度非常高,不过实际中也会用基于力的方式替代(结果没那么丝滑但能用)
在这里插入图片描述

Sensing环境感知

对世界的感知是我们和ai决策的依据,感知分为内部和外部信息:

内部的信息包含位置、血量、护甲状态、增益状态、可以被自由获取的东西等等;外部的信息包含静态空间信息如Tactical Map战术地图、掩体等和动态信息如influenceMap人群热力图、视角图、游戏物体等。
在这里插入图片描述
这些非常类似人类对世界的感知(并不是上帝视角),有视觉、听觉并随距离衰减,有活动范围、视野等,但如果感知太多会影响性能,因此一般会取舍几个,并范围内共享信息
在这里插入图片描述

经典决策算法

经典决策算法有:
有限状态机(Finite State Machine)
行为树(Behavior Tree):AI最核心的体系
层次任务网络(Hierarchical Tasks Network)
目标驱动的行为计划系统(Goal Oriented Action Planning)
蒙特卡洛搜索树(Monte Carlo Tree Search)
深度学习(Deep Learning)

有限状态机(Finite State Machine)

根据一些条件转换(Transition)一个状态到其他状态
在这里插入图片描述
比如吃豆人的状态机示例:
在这里插入图片描述
好处:容易执行、容易理解、对于简单例子,应对起来非常快
坏处:可维护性差,特别是添加和移动状态;重用性差,不能被应用于其他项目或角色;可扩展性差,很难去修改复杂的案例

层次有限状态机(HFSM)

把状态机分为很多层或模块,每个状态机之间有相互的接口,复杂度可控;虽然能部分解决上述问题,但是会造成一定的性能下降,难以跳模块,反应速度也会下降。15年前的很多游戏就是这么做的,属于“古老”的方法。
在这里插入图片描述

行为树(Behavior Tree)

行为树和人的思考类似,例如 人碰到一个敌人,会根据自己的状态来选择追击还是撤退。(一些复杂的商业决策也有类似决策树的逻辑)
在这里插入图片描述

可执行结点

分为条件节点和动作节点
条件结点可以立马执行完,而行为结点有一定过程,例如追鬼,首先得有寻路系统,然后还需要转向系统。行为也分为正在进行和失败等几种状态。
在这里插入图片描述

控制结点

在这里插入图片描述

  • Sequence 顺序执行,&&:从左到右便利子节点,如果某个子节点返回 Failure 就停止整个行为,或者时所有子节点都成功执行,返回 Success,并执行该行为。
    在这里插入图片描述

  • Selector 条件执行,||: 根据条件尝试所有子节点,一旦某个子节点 满足条件,立马作出该决策。
    在这里插入图片描述

  • Parallel并行执行 :一个 AI 体可以同时进行多个行为,例如对于射击游戏来说可以同时进行移动和射击。

  • Decorator装饰节点:起修饰作用,例如循环执行、执行一次、计时器、定时等。
    在这里插入图片描述

注意行为树tick更新时要每一帧都从根节点开始判断,这一点上也可以优化为正常从上一帧的节点继续,但某些优先级高的event会更新整棵树。
在这里插入图片描述

黑板(Blackboard)

用于记录行为状态,用于把数据与逻辑分离
在这里插入图片描述

  • 行为树的好处:
    模块化、层级组织(每个子树可以被看作是一个模块)
    可读性高
    容易维护,并且修改只会影响树的一部分
    反应快,每个 tick 会快速的根据环境来改变行为
    容易 Debug,每个 tick 都是是一个完整的决策。

  • 行为树的坏处
    如果不优化,每个 tick 都从根节点触发,会造成更大的开销
    反应性越好,条件越多,每帧的花销也越大

QA
行为树和if else有什么区别:if else就是最简单的行为树,行为树类似goto、jump等语言指令
ai如何从环境中提取数据(感知):环境数据类型多数量多,其实很难读取,可以用引擎中的反射等技术解决;ai提取数据时效率其实不高,需要对感知做规划和指令
如何处理垂直邻面的NavMesh生成?根据高度设置为断开的悬崖或是可通过的障碍,如果可以攀爬另说

原文链接:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/965145.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024最新版Node.js详细安装教程(含npm配置淘宝最新镜像地址)

一:Node.js安装 浏览器中搜索Nodejs,或直接用网址:Node.js — 在任何地方运行 JavaScript 建议此处下载长期支持版本(红框内): 开始下载,完成后打开文件: 进入安装界面,在此处勾选,再点击n…

高效 MyBatis SQL 写法一

高效 MyBatis SQL 写法一 前言 MyBatis 作为一款优秀的持久层框架,极大地简化了数据库操作。 然而,在实际开发中,XML 配置的编写仍然可能显得繁琐。 本文将分享一些 MyBatis 动态 SQL 的优质写法,帮助开发者提升效率并减少错误…

C语言按位取反【~】详解,含原码反码补码的0基础讲解【原码反码补码严格意义上来说属于计算机组成原理的范畴,不过这也是学好编程初级阶段的必修课】

目录 概述【适合0基础看的简要描述】: 上述加粗下划线的内容提取版: 从上述概述中提取的核心知识点,需背诵: 整数【包含整数,负整数和0】的原码反码补码相互转换的过程图示: 过程详细刨析:…

如何安装PHP依赖库 更新2025.2.3

要在PHP项目中安装依赖,首先需要确保你的系统已经安装了Composer。Composer是PHP的依赖管理工具,它允许你声明项目所需的库,并管理它们。以下是如何安装Composer和在PHP项目中安装依赖的步骤: 一. 安装Composer 对于Windows用户…

【通俗易懂说模型】线性回归(附深度学习、机器学习发展史)

🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀深度学习_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前言 2. …

硬件电路基础

目录 1. 电学基础 1.1 原子 1.2 电压 1.3 电流 1.电流方向: 正极->负极,正电荷定向移动方向为电流方向,与电子定向移动方向相反。 2.电荷(这里表示负电荷)运动方向: 与电流方向相反 1.4 测电压的时候 2. 地线…

【含文档+PPT+源码】基于Python爬虫二手房价格预测与可视化系统的设计与实现

项目介绍 本课程演示的是一款基于Python爬虫二手房价格预测与可视化系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的 Java 学习者。 包含:项目源码、项目文档、数据库脚本、软件工具等所有资料 带你从零开始部署运行本套系统 该项…

【数据结构】树哈希

目录 一、树的同构1. 定义2. 具体理解(1) 结点对应(2) 孩子相同(3) 递归性质 3. 示例 二、树哈希1.定义2.哈希过程(1)叶节点哈希(2)非叶节点哈希(3)组合哈希值 3.性质(1) 唯一性 \re…

渗透测试之文件包含漏洞 超详细的文件包含漏洞文章

目录 说明 通常分为两种类型: 本地文件包含 典型的攻击方式1: 影响: 典型的攻击方式2: 包含路径解释: 日志包含漏洞: 操作原理 包含漏洞读取文件 文件包含漏洞远程代码执行漏洞: 远程文件包含…

Mysql:数据库

Mysql 一、数据库概念?二、MySQL架构三、SQL语句分类四、数据库操作4.1 数据库创建4.2 数据库字符集和校验规则4.3 数据库修改4.4 数据库删除4.4 数据库备份和恢复其他 五、表操作5.1 创建表5.2 修改表5.3 删除表 六、表的增删改查6.1 Create(创建):数据新增1&#…

ChatGPT怎么回事?

纯属发现,调侃一下~ 这段时间deepseek不是特别火吗,尤其是它的推理功能,突发奇想,想用deepseek回答一些问题,回答一个问题之后就回复服务器繁忙(估计还在被攻击吧~_~) 然后就转向了GPT&#xf…

Vue 中如何嵌入可浮动的第三方网页窗口(附Demo)

目录 前言1. 思路Demo2. 实战Demo 前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 1. 思路Demo 以下Demo提供思路参考,需要结合实际自身应用代码 下述URL的链接使用百度替代! 方式 1…

【Linux】23.进程间通信(2)

文章目录 3. 进程间通信3.1 进程间通信介绍3.1.1 进程间通信目的3.1.2 进程间通信发展 3.2 什么是进程间通信3.3 管道3.4 匿名管道pipe()3.4.1 站在文件描述符角度-深度理解管道3.4.2 站在内核角度-管道本质3.4.3 用fork来共享管道原理3.4.5 管道相关知识3.4.6 代码一&#xff…

AI大模型开发原理篇-8:Transformer模型

近几年人工智能之所以能迅猛发展,主要是靠2个核心思想:注意力机制Attention Mechanism 和 Transformer模型。本次来浅谈下Transformer模型。 重要性 Transformer模型在自然语言处理领域具有极其重要的地位,为NLP带来了革命性的突破‌。可以…

html2canvas绘制页面并生成图像 下载

1. 简介 html2canvas是一个开源的JavaScript库,它允许开发者在用户的浏览器中直接将HTML元素渲染为画布(Canvas),并生成图像。以下是对html2canvas的详细介绍: 2. 主要功能 html2canvas的主要功能是将网页中的HTML元…

基于RK3588/RK3576+MCU STM32+AI的储能电站电池簇管理系统设计与实现

伴随近年来新型储能技术的高质量规模化发展,储能电站作为新能源领域的重要载体, 旨在配合逐步迈进智能电网时代,满足电力系统能源结构与分布的创新升级,给予相应规模 电池管理系统的设计与实现以新的挑战。同时,电子系…

机器学习-线性回归(参数估计之结构风险最小化)

前面我们已经了解过关于机器学习中的结构风险最小化准则,包括L1 正则化(Lasso)、L2 正则化(Ridge)、Elastic Net,现在我们结合线性回归的场景,来了解一下线性回归的结构风险最小化,通…

【数据分析】豆瓣电影Top250的数据分析与Web网页可视化(numpy+pandas+matplotlib+flask)

豆瓣电影Top250的数据分析与Web网页可视化(numpy+pandas+matplotlib+flask) 豆瓣电影Top250官网:https://movie.douban.com/top250写在前面 实验目的:实现豆瓣电影Top250详情的数据分析与Web网页可视化。电脑系统:Windows使用软件:PyCharm、NavicatPython版本:Python 3.…

备考蓝桥杯8——EEPROM读写

目录 看手册时间 关于IIC 附录 IIC代码 看手册时间 我们主要是搞编程,所以,我们一般会非常关心我们如何对EEPROM进行编程。特别的,EEPROM要做读写,首先是看它的IIC设备地址。 有趣的是——我们的EEPROM的IIC地址是根据地址进行…

深入浅出:旋转变位编码(RoPE)在现代大语言模型中的应用

在现代大语言模型(LLMs)中,位置编码是一个至关重要的组件。无论是 Meta 的 LLaMA 还是 Google 的 PaLM,这些模型都依赖于位置编码来捕捉序列中元素的顺序信息。而旋转变位编码(RoPE) 作为一种创新的位置编码…