OpenCV:特征检测总结

目录

一、什么是特征检测?

二、OpenCV 中的常见特征检测方法

1. Harris 角点检测

2. Shi-Tomasi 角点检测

3. Canny 边缘检测

4. SIFT(尺度不变特征变换)

5. ORB

三、特征检测的应用场景

1. 图像匹配

2. 运动检测

3. 自动驾驶

4. 生物特征识别

四、总结


一、什么是特征检测?

特征检测是计算机视觉中的重要技术,用于识别图像中的关键点(如角点、边缘、纹理等),帮助计算机理解和分析图像内容。特征检测的核心目标是找到能够 稳定、独特、可区分 的图像区域,以便在后续的目标识别、图像匹配、运动估计等任务中使用。

特征检测的基本类型:

  1. 角点检测:检测图像中的拐角点,例如 Harris 角点、Shi-Tomasi 角点。
  2. 边缘检测:检测图像中强度变化明显的边界,例如 Canny 边缘检测。
  3. 局部特征点检测:提取关键点及其描述符,例如 SIFT、SURF、ORB、FAST。

二、OpenCV 中的常见特征检测方法

OpenCV 提供了多种特征检测算法,可以根据应用场景选择适合的方法。

1. Harris 角点检测

Harris 角点检测是一种用于检测角点的方法。角点是指图像中灰度变化较大的点,它们通常对应于结构的交点,如建筑物的拐角。

核心思想:

  • 计算图像窗口在不同方向上的灰度变化。
  • 若在所有方向上灰度变化较大,则认为该点是角点。

示例代码:

import cv2
import numpy as np

# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 计算 Harris 角点
harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)

# 角点增强
image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]

# 显示结果
cv2.imshow('Harris Corners', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:

 

应用场景:

  • 目标跟踪
  • 运动检测
  • 物体识别

2. Shi-Tomasi 角点检测

Shi-Tomasi 角点检测是 Harris 角点的改进版本,能够更好地选择稳定的角点。

import cv2
import numpy as np

# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 计算 Harris 角点
#harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)

# 角点增强
#image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]

corners = cv2.goodFeaturesToTrack(gray, maxCorners=100, qualityLevel=0.01, minDistance=10)
for corner in np.int0(corners):
    x, y = corner.ravel()
    cv2.circle(image, (x, y), 5, (0, 255, 0), -1)

# 显示结果
cv2.imshow('Shi-Tomasi', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:

应用场景:

  • 运动跟踪(如光流跟踪)
  • 结构分析

3. Canny 边缘检测

Canny 边缘检测 主要用于提取图像中的 边缘特征,是计算机视觉中的重要工具。

核心步骤:

  1. 高斯模糊去噪。
  2. 计算梯度,检测边缘。
  3. 通过非极大值抑制减少边缘宽度。
  4. 通过双阈值去除弱边缘。

示例代码:

import cv2
import numpy as np

# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

edges = cv2.Canny(gray, 100, 200)
cv2.imshow('Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果: 

 

应用场景:

  • 车道检测
  • 物体轮廓提取
  • OCR(光学字符识别)

4. SIFT(尺度不变特征变换)

SIFT (Scale-Invariant Feature Transform) 是一种经典的特征检测方法,具有 尺度不变性 和 旋转不变性,能够检测图像中的局部特征点,并为每个特征点生成独特的描述符。

示例代码:

import cv2
import numpy as np

# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

sift = cv2.SIFT_create()
keypoints, descriptors = sift.detectAndCompute(gray, None)
image_sift = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('SIFT Features', image_sift)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:  

 

应用场景:

  • 图像匹配(如拼接全景图)
  • 物体识别
  • 机器人导航

5. ORB

ORB (Oriented FAST and Rotated BRIEF)是 SIFT 和 SURF 的高效替代方案,适用于实时应用,如移动设备上的特征检测。

示例代码:

import cv2
import numpy as np

# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

orb = cv2.ORB_create()
keypoints = orb.detect(gray, None)
image_orb = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('ORB Features', image_orb)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果: 

 

应用场景:

  • 低计算资源环境(如嵌入式设备)
  • 物体跟踪
  • 视觉 SLAM(同时定位与地图构建)

三、特征检测的应用场景

1. 图像匹配

  • 通过特征点匹配来识别物体,如 SIFT、ORB 可用于 拼接全景图 或 目标识别。

2. 运动检测

  • 角点检测(如 Shi-Tomasi)可用于跟踪视频中的运动物体,如 光流跟踪。

3. 自动驾驶

  • Canny 边缘检测 可用于 车道检测,ORB 可用于 视觉 SLAM。

4. 生物特征识别

  • SIFT、ORB 可用于 指纹识别、人脸识别。

四、总结

方法主要用途特点
Harris 角点角点检测计算简单,适用于运动检测
Shi-Tomasi 角点改进的角点检测适用于光流跟踪等任务
Canny 边缘边缘检测精确提取物体轮廓
SIFT关键点检测、图像匹配尺度、旋转不变,精度高
ORB关键点检测、实时匹配适合移动端,速度快

如何选择特征检测方法?

  • 如果需要快速检测角点:Shi-Tomasi、Harris。
  • 如果需要检测物体轮廓:Canny。
  • 如果需要进行图像匹配:SIFT、ORB。
  • 如果需要在低计算资源环境下运行:ORB 是更好的选择。

😀通过OpenCV提供的特征检测工具,我们可以在图像处理、目标识别、运动检测等多个领域实现高效的视觉分析。希望本篇博文能有所帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/965045.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习系列--01.入门

一.深度学习概念 深度学习(Deep Learning)是机器学习的分支,是指使用多层的神经网络进行机器学习的一种手法抖音百科。它学习样本数据的内在规律和表示层次,最终目标是让机器能够像人一样具有分析学习能力,能够识别文字…

Vue3.5常用特性整理

Vue3.5 发布已近半年&#xff0c;抽空整理下常用的新增/改动特性 响应式 Props 解构 Vue3.5 中 Props 正式支持解构了&#xff0c;并添加了响应式跟踪 设置默认值 使用 JavaScript 原生的默认值语法声明 props 默认值 以前 const props withDefaults(defineProps<{ co…

Windows程序设计10:文件指针及目录的创建与删除

文章目录 前言一、文件指针是什么&#xff1f;二、设置文件指针的位置&#xff1a;随机读写&#xff0c;SetFilePointer函数1.函数说明2.函数实例 三、 目录的创建CreateDirectory四、目录的删除RemoveDirectory总结 前言 Windows程序设计10&#xff1a;文件指针及目录的创建与…

【Linux系统编程】进程间通信(管道:匿名管道、命名管道、实战练习)

知其然&#xff0c;知其所以然 什么是进程间通信&#xff1a; 进程间通信是不同进程间交换信息的一种机制。进程可能在同一台计算机上&#xff0c;也可能在网络中的不同计算机上。那我们为什么要有这种机制&#xff1a; 为什么进程间要通信&#xff1a; ①数据共享&#xff…

K8S ReplicaSet 控制器

一、理论介绍 今天我们来实验 ReplicaSet 控制器&#xff08;也叫工作负载&#xff09;。官网描述如下&#xff1a; 1、是什么&#xff1f; ReplicaSet 副本集&#xff0c; 维护一组稳定的副本 Pod 集合。 2、为什么需要&#xff1f; 解决 pod 被删除了&#xff0c;不能自我恢…

【C语言】自定义类型讲解

文章目录 一、前言二、结构体2.1 概念2.2 定义2.2.1 通常情况下的定义2.2.2 匿名结构体 2.3 结构体的自引用和嵌套2.4 结构体变量的定义与初始化2.5 结构体的内存对齐2.6 结构体传参2.7 结构体实现位段 三、枚举3.1 概念3.2 定义3.3 枚举的优点3.3.1 提高代码的可读性3.3.2 防止…

VUE2双向绑定的原理

文章目录 VUE2双向绑定的原理1. 什么是双向绑定2. 双向绑定的原理2.1 ViewModel的重要作用2.2 双向绑定的流程 3. 双向绑定的实现3.1 data响应化处理3.2 Compile编译3.3 依赖收集 VUE2双向绑定的原理 1. 什么是双向绑定 讲双向绑定先讲单项绑定&#xff0c;啥叫单项绑定&…

入行FPGA设计工程师需要提前学习哪些内容?

FPGA作为一种灵活可编程的硬件平台&#xff0c;广泛应用于嵌入式系统、通信、数据处理等领域。很多人选择转行FPGA设计工程师&#xff0c;但对于新手来说&#xff0c;可能在学习过程中会遇到一些迷茫和困惑。为了帮助大家更好地准备&#xff0c;本文将详细介绍入行FPGA设计工程…

Mac M1 ComfyUI 中 AnyText插件安装问题汇总?

Q1&#xff1a;NameError: name ‘PreTrainedTokenizer’ is not defined ? 该项目最近更新日期为2024年12月&#xff0c;该时间段的transformers 版本由PyPI 上的 transformers 页面 可知为4.47.1. A1: transformers 版本不满足要求&#xff0c;必须降级transformors &#…

深度学习 Pytorch 神经网络的学习

本节将从梯度下降法向外拓展&#xff0c;介绍更常用的优化算法&#xff0c;实现神经网络的学习和迭代。在本节课结束将完整实现一个神经网络训练的全流程。 对于像神经网络这样的复杂模型&#xff0c;可能会有数百个 w w w的存在&#xff0c;同时如果我们使用的是像交叉熵这样…

Java 大视界 -- 深度洞察 Java 大数据安全多方计算的前沿趋势与应用革新(52)

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

Docker使用指南(二)——容器相关操作详解(实战案例教学,创建/使用/停止/删除)

目录 1.容器操作相关命令​编辑 案例一&#xff1a; 案例二&#xff1a; 容器常用命令总结&#xff1a; 1.查看容器状态&#xff1a; 2.删除容器&#xff1a; 3.进入容器&#xff1a; 二、Docker基本操作——容器篇 1.容器操作相关命令 下面我们用两个案例来具体实操一…

【C++】STL——list的使用

目录 &#x1f495;1.带头双向链表List &#x1f495;2.list用法介绍 &#x1f495;3.list的初始化 &#x1f495;4.size函数与resize函数 &#x1f495;5.empty函数 &#x1f495;6.front函数与back函数 &#x1f495;7.push_front,push_back,pop_front,pop_back函数…

Java面试题集合篇5:10道基础面试题

文章目录 前言41、多线程使用 ArrayList42、List 和 Set 区别43、HashSet 实现原理44、HashSet检查重复和保证数据不可重复45、BlockingQueue46、Map接口46.1、HashMap实现原理46.2、HashMap在JDK1.7和JDK1.8中不同点46.3、JDK1.7 VS JDK1.8 比较 47、HashMap的put方法流程48、…

控件【QT】

文章目录 控件QWidgetenabledgeometrysetGeometry qrcwindowOpacityQPixmapfonttoolTipfocusPolicystyleSheetQPushButtonRadio ButtionCheck Box显示类控件QProgressBarcalendarWidget 控件 Qt中已经提供了很多内置的控件了(按钮,文本框,单选按钮,复选按钮&#xff0c;下拉框…

docker pull Error response from daemon问题

里面填写 里面解决方案就是挂代理。 以虚拟机为例&#xff0c;将宿主机配置端口设置&#xff0c;https/http端口设为7899 配置虚拟机的http代理&#xff1a; vim /etc/systemd/system/docker.service.d/http-proxy.conf里面填写&#xff0c;wq保存 [Service] Environment…

linux 进程补充

环境变量 基本概念 环境变量(environment variables)一般是指在操作系统中用来指定操作系统运行环境的一些参数 如&#xff1a;我们在编写C/C代码的时候&#xff0c;在链接的时候&#xff0c;从来不知道我们的所链接的动态静态库在哪 里&#xff0c;但是照样可以链接成功&#…

一文解释pytorch 中的 squeeze() 和 unsqueeze()函数(全网最详细版)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;零基础入门PyTorch框架_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 …

QT:对象树

1.概念 Qt 中的对象树是一种以树形结构组织 Qt 对象的方式。当创建一个QObject&#xff08;Qt 中大多数类的基类&#xff09;或其派生类的对象时&#xff0c;可以为其指定一个父对象&#xff08;parent&#xff09;。这个对象就会被添加到其父对象的子对象列表中&#xff0c;形…

labview通过时间计数器来设定采集频率

在刚接触labview的时候&#xff0c;笔者通常用定时里的等待函数来实现指令的收发&#xff0c;但是当用到的收发消息比较多时就出现了卡顿&#xff0c;卡死的情况&#xff0c;这是因为当用队列框架时&#xff0c;程序卡在了其中的一个分支里&#xff0c;等通过相应的延时后才可以…