优化数据库结构

MySQL学习大纲


一个好的数据库设计方案对于数据库的性能尝尝会起到事倍功半的效果,合理的数据库结构不仅使数据库占用更小的磁盘空间,而且使查询速度更快。数据库结构的设计需要考虑数据冗余、查询和更新速度、字段的数据类型是否合理等多方面的内容!


1、拆分表:冷热数据分离

  • 1.拆分表的思路是,把1个包含很多字段的表拆分成2个或者多个相对较小的表,这样做的原因是:这些表中某些字段的操作频率很高(热数据),经常要进行查询或者更新操作,而另外一些字段的使用频率却很低(冷数据),冷热数据分离,可以减小表的宽度。如果放在一个表里面,每次查询都要读取大记录,会消耗较多的资源
  • 2.MySQL限制每个表最多存储4096列,并且每一行数据的大小不能超过65535字节。表越宽,把表装载进内存缓冲池时所占用的内存也就越大,也会消耗更多的IO。冷热数据分离的目的是:①减少磁盘IO,保证热数据的内存缓存命中率。②更有效的利用缓存,避免读入无用的冷数据

2、增加中间表:非频繁更新类型的表适用

  • 1.对于需要经常联合查询的表,可以建立中间表以提高查询效率。通过建立中间表,把需要经常联合查询的数据插入中间表中,然后将原来的联合查询改为对中间表的查询,以此来提高查询效率
  • 2.首先,分析经常联合查询表中的字段;然后,使用这些字段建立一个中间表,并将原来联合查询的表的数据插入中间表中;最后使用中间表来进行查询

3、增加冗余字段

  • 1.设计数据库表时应尽量遵循范式理论的规约,尽可能减少冗余字段,让数据库设计看起来精致、优雅。但是,合理地加入冗余字段可以提高查询速度
  • 2.表的规范化程度越高,表与表之间的关系就越多,需要连接查询的情况也就越多。尤其在数据量大,而且需要频繁进行连接的时候,为了提升效率,我们也可以考虑增加冗余字段来减少连接。

4、优化数据类型:

4.1.概述:

  • 1.改进表的设计时,可以考虑优化字段的数据类型。这个问题在大家刚从事开发时基本不算是问题。但是,随着你的经验越来越丰富,参与的项目越来越大,数据量也越来越多的时候,你就不能只从系统稳定性的角度来思考问题了,还要考虑到系统整体的稳定性和效率。此时,优先选择符合存储需要的最小的数据类型。
  • 2.列的字段越大,建立索引时所需要的空间也就越大,这样一页中所能存储的索引节点的数量也就越少,在遍历时所需要的IO次数也就越多,索引的性能也就越差

4.2.案例分析:

a.对整数类型进行优化

  • 1.遇到整数类型的字段可以用INT型。这样做的理由是,INT型数据有足够大的取值范围,不用担心数据超出取值范围的问题。刚开始做项目的时候,首先要保证系统的稳定性,这样设计字段类型是可以的。但在数据量很大的时候,数据类型的定义,在很大程度上会影响到系统整体的执行效率
  • 2.对于非负型的数据(如自增ID、整型IP)来说,要优先使用无符号整型UNSIGNED来存储。因为无符号相对于有符号,同样的字节数,存储的数值范围更大。如tinyint有符号为-128-127,无符号为0-255,多出一倍的存储空间。

b.既可以使用文本类型也可以使用整数类型的字段,要选择使用整数类型

  • 1.跟文本类型数据相比,大整数往往占用更少的存储空间,因此,在存取和比对的时候,可以占用更少的内存空间。所以,在二者皆可用的情况下,尽量使用整数类型,这样可以提高查询的效率。如:将IP地址转换成整型数据

c.避免使用TEXT、BLOB数据类型:

  • 1.MySQL内存临时表不支持TEXT、BLOB这样的大数据类型,如果查询中包含这样的数据,在排序等操作时,就不能使用内存临时表,必须使用磁盘临时表进行。并且对于这种数据,MySQL还是要进行二次查询,会使SQL性能变得很差,但不是说一定不能使用这样的数据类型
  • 2.如果一定要使用,建议把BLOB或是TEXT列分离到单独的扩展表中,查询时一定不要使用select*,而只需要取出必要的列,不需要TEXT列的数据时不要对该列进行查询

d.避免使用ENUM(枚举)类型:

  • 1.修改ENUM值需要使用ALTER语句
  • 2.ENUM类型的ORDER BY操作效率低,需要额外操作。使用TINYINT来代替ENUM类型

e.使用TIMESTAMP存储时间

  • TIMESTAMP 存储的时间范围1970-01-01 00:00:01~2038-01-19-03:14:07
  • TIMESTAMP使用4字节,DATETIME使用8个字节,同时 TIMESTAMP具有自动赋值以及自动更新的特性

f.用DECIMAL代替FLOAT和DOUBLE存储精确浮点数

  • 非精准浮点:float,double
  • 精准浮点:decimal(不会丢失精度)

5、优化插入记录的速度

5.1.概述:

  • 插入记录时,影响插入的速度主要是索引,唯一性校验,一次性插入记录条数等。根据这些情况可以分别进行优化,我们以不同的存储引擎来进行分析:

5.2.MyIDAM引擎

a.禁用索引

在这里插入图片描述

b.禁用唯一性检查

在这里插入图片描述

c.使用批量插入

在这里插入图片描述

d.使用LOAD DATA INFILE批量导入

在这里插入图片描述


5.2 InnoDB引擎

a.禁用唯一性检查

 在这里插入图片描述

b.禁用外键检查

在这里插入图片描述

c.禁止自动提交

在这里插入图片描述


6、使用非空约束

  • 1.在设计字段的时候,如果业务允许,建议尽量使用非空约束。这样做的好处是:
    • 进行比较和计算时,省去要对NULL值的字段判断是否为空的开销,提高存储效率
    • 非空字段也容易创建索引。因为索引NULL列需要额外的空间来保存,所以要占用更多的空间。使用非空约束,就可以节省存储空间(每个字段1个bit)

7、分析表、检查表与优化表

7.1.概述:

  • 1.MySQL提供了分析表、检查表和优化表的语句
  • 2.分析表主要是分析关键字的分布,检查表主要是检查表是否存在错误,优化表主要是消除删除或者更新造成的空间浪费

7.2.分析表:

a.说明:

在这里插入图片描述

b.案例:

  • 1.创建数据库:
    在这里插入图片描述
  • 2.为了插入1000条数据,创建存储函数和存储过程:
    在这里插入图片描述
    在这里插入图片描述
  • 3.调用存储函数,实现数据插入:
    在这里插入图片描述
  • 4.验证数据:
    在这里插入图片描述

c.分析:

  • 1.如下可以看到主id的
    在这里插入图片描述

7.3.


8、大表优化

8.1 限定查询的范围

  • 禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内;

资料

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/964790.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【deepseek实战】绿色好用,不断网

前言 最佳deepseek火热网络,我也开发一款windows的电脑端,接入了deepseek,基本是复刻了网页端,还加入一些特色功能。 助力国内AI,发出自己的热量 说一下开发过程和内容的使用吧。 目录 一、介绍 二、具体工作 1.1、引…

Meta Sapiens AI论文解读:人类视觉模型基石初现,AI 未来走向何方?

一、引言 在本文中,我们将深入探讨 Meta AI 的一项新成果,该成果发表于一篇题为《Sapiens:人类视觉模型的基础》的研究论文中。这篇论文介绍了一系列模型,这些模型针对四项以人类为中心的基本任务,正如我们在上面的演示…

多用户同时RDP登入Win10

自备以下文件&#xff1a; winsw_frpc.xml展开如下&#xff1a; <service><!-- ID of the service. It should be unique across the Windows system--><id>winsw_frp</id><!-- Display name of the service --><name>winsw_frp</na…

2025 持续防范 GitHub 投毒,通过 Sharp4SuoExplorer 分析 Visual Studio 隐藏文件

在2024年底的网络安全事件中&#xff0c;某提权工具被发现植入后门&#xff0c;攻击者利用 .suo 文件作为隐蔽的攻击方式。由于 .suo 文件是 Visual Studio 项目的隐藏配置文件&#xff0c;通常不为安全研究人员所关注&#xff0c;因此为攻击者提供了潜在的攻击渠道。 初步调查…

Unity 2D实战小游戏开发跳跳鸟 - 记录显示最高分

上一篇文章中我们实现了游戏的开始界面,在开始界面中有一个最高分数的UI,本文将接着实现记录最高分数以及在开始界面中显示最高分数的功能。 添加跳跳鸟死亡事件 要记录最高分,则需要在跳跳鸟死亡时去进行判断当前的分数是否是最高分,如果是最高分则进行记录,如果低于之前…

牛客 - 链表相加(二)

描述 假设链表中每一个节点的值都在 0 - 9 之间&#xff0c;那么链表整体就可以代表一个整数。 给定两个这种链表&#xff0c;请生成代表两个整数相加值的结果链表。 数据范围&#xff1a;0≤n,m≤1000000&#xff0c;链表任意值 0≤val≤9 要求&#xff1a;空间复杂度 O(n)&am…

Math Reference Notes: 符号函数

1. 符号函数的定义 符号函数&#xff08;Sign Function&#xff09; sgn ( x ) \text{sgn}(x) sgn(x) 是一个将实数 ( x ) 映射为其 符号值&#xff08;即正数、负数或零&#xff09;的函数。 它的定义如下&#xff1a; sgn ( x ) { 1 如果 x > 0 0 如果 x 0 − 1 如…

手写MVVM框架-构建虚拟dom树

MVVM的核心之一就是虚拟dom树&#xff0c;我们这一章节就先构建一个虚拟dom树 首先我们需要创建一个VNode的类 // 当前类的位置是src/vnode/index.js export default class VNode{constructor(tag, // 标签名称&#xff08;英文大写&#xff09;ele, // 对应真实节点children,…

STM32单片机学习记录(2.2)

一、STM32 13.1 - PWR简介 1. PWR&#xff08;Power Control&#xff09;电源控制 &#xff08;1&#xff09;PWR负责管理STM32内部的电源供电部分&#xff0c;可以实现可编程电压监测器和低功耗模式的功能&#xff1b; &#xff08;2&#xff09;可编程电压监测器&#xff08;…

ASUS/华硕天选5锐龙版 FA507U 原厂Win11 22H2 专业版系统 工厂文件 带ASUS Recovery恢复

华硕工厂文件恢复系统 &#xff0c;安装结束后带隐藏分区&#xff0c;带一键恢复&#xff0c;以及机器所有的驱动和软件。 支持型号&#xff1a;FA507UU FA507UI FA507UV 系统版本&#xff1a;Windows 11 22H2 文件下载&#xff1a;asusoem.cn/920.html 文件格式&#xff…

React图标库: 使用React Icons实现定制化图标效果

React图标库: 使用React Icons实现定制化图标效果 图标库介绍 是一个专门为React应用设计的图标库&#xff0c;它包含了丰富的图标集合&#xff0c;覆盖了常用的图标类型&#xff0c;如FontAwesome、Material Design等。React Icons可以让开发者在React应用中轻松地添加、定制各…

【C++篇】哈希表

目录 一&#xff0c;哈希概念 1.1&#xff0c;直接定址法 1.2&#xff0c;哈希冲突 1.3&#xff0c;负载因子 二&#xff0c;哈希函数 2.1&#xff0c;除法散列法 /除留余数法 2.2&#xff0c;乘法散列法 2.3&#xff0c;全域散列法 三&#xff0c;处理哈希冲突 3.1&…

e2studio开发RA2E1(9)----定时器GPT配置输入捕获

e2studio开发RA2E1.9--定时器GPT配置输入捕获 概述视频教学样品申请硬件准备参考程序源码下载选择计时器时钟源UART配置UART属性配置设置e2studio堆栈e2studio的重定向printf设置R_SCI_UART_Open()函数原型回调函数user_uart_callback ()printf输出重定向到串口定时器输入捕获配…

MacBook Pro(M1芯片)DeepSeek R1 本地大模型环境搭建

MacBook Pro&#xff08;M1芯片&#xff09;DeepSeek R1 本地大模型环境搭建 这一阵子deepseek真的是太火了&#xff0c;这不&#xff0c;R1出来后更是掀起AI的狂欢&#xff0c;作为一个AI的外行人&#xff0c;也是忍不住想要拿过来感受一番&#xff5e;&#xff5e; 主要呢&…

数据结构:队列篇

图均为手绘,代码基于vs2022实现 系列文章目录 数据结构初探: 顺序表 数据结构初探:链表之单链表篇 数据结构初探:链表之双向链表篇 链表特别篇:链表经典算法问题 数据结构:栈篇 文章目录 系列文章目录前言一.队列的概念和结构1.1概念一、动态内存管理优势二、操作效率与安全性…

Python的那些事第十二篇:从入门到“不撞南墙不回头”Python 文件操作与异常处理

Python 文件操作与异常处理&#xff1a;从入门到“不撞南墙不回头” 目录 Python 文件操作与异常处理&#xff1a;从入门到“不撞南墙不回头” 一、引言 二、Python 文件操作 三、Python 异常处理 四、综合实例&#xff1a;学生成绩管理系统 五、总结与展望 一、引言 1.…

论文解读:《基于TinyML毫米波雷达的座舱检测、定位与分类》

摘要 本文提出了一种实时的座舱检测、定位和分类解决方案&#xff0c;采用毫米波&#xff08;mmWave&#xff09;雷达系统芯片&#xff08;SoC&#xff09;&#xff0c;CapterahCAL60S344-AE&#xff0c;支持微型机器学习&#xff08;TinyML&#xff09;。提出了波束距离-多普勒…

【B站保姆级视频教程:Jetson配置YOLOv11环境(七)Ultralytics YOLOv11配置】

Jetson配置YOLOv11环境&#xff08;7&#xff09;Ultralytics YOLOv11环境配置 文章目录 1. 下载YOLOv11 github项目2. 安装ultralytics包3. 验证ultralytics安装3.1 下载yolo11n.pt权重文件3.2 推理 1. 下载YOLOv11 github项目 创建一个目录&#xff0c;用于存放YOLOv11的项目…

代码讲解系列-CV(二)——卷积神经网络

文章目录 一、系列大纲二、卷积神经网络&#xff08;图像分类为例&#xff09;2.1 pytorch简介训练框架张量自动微分动态计算图更深入学习 2.2 数据输入和增强Dataset—— torch.utils.data.DatasetDataLoader——torch.utils.data.Dataloader数据增强 2.3 CNN设计与训练nn.Mod…

YK人工智能(六)——万字长文学会基于Torch模型网络可视化

1. 可视化网络结构 随着深度神经网络做的的发展&#xff0c;网络的结构越来越复杂&#xff0c;我们也很难确定每一层的输入结构&#xff0c;输出结构以及参数等信息&#xff0c;这样导致我们很难在短时间内完成debug。因此掌握一个可以用来可视化网络结构的工具是十分有必要的…