算法设计-0-1背包动态规划(C++)

一、问题阐述

0-1 背包问题的目标是在给定背包容量 W 的情况下,从 n 个物品中选择一些物品放入背包,使得背包中物品的总价值最大。每个物品只能选择一次(即要么放入背包,要么不放入)。

二、代码

#include <iostream>
#include <vector>
using namespace std;

// 动态规划解决 0-1 背包问题
int knapsack(int W, const vector<int>& weights, const vector<int>& values, int n) {
    // 创建二维 DP 表
    vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));

    // 填充 DP 表
    for (int i = 1; i <= n; ++i) {
        for (int w = 0; w <= W; ++w) {
            if (weights[i - 1] <= w) {
                // 选择第 i 个物品
                dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1]);
            } else {
                // 不选择第 i 个物品
                dp[i][w] = dp[i - 1][w];
            }
        }
    }

    // 返回最大价值
    return dp[n][W];
}

int main() {
    // 输入
    int n, W;
    cout << "请输入物品数量 n 和背包的最大承重 W: ";
    cin >> n >> W;

    vector<int> weights(n);
    vector<int> values(n);

    cout << "请输入每个物品的重量: ";
    for (int i = 0; i < n; ++i) {
        cin >> weights[i];
    }

    cout << "请输入每个物品的价值: ";
    for (int i = 0; i < n; ++i) {
        cin >> values[i];
    }

    // 计算最大价值
    int max_value = knapsack(W, weights, values, n);

    // 输出结果
    cout << "最大总价值为: " << max_value << endl;

    return 0;
}

三、复杂度

  • 时间复杂度:O(n * W),其中 n 是物品数量,W 是背包容量。

  • 空间复杂度:O(n * W),用于存储 DP 表。

四、详细阐述

代码结构

  1. 输入部分:从用户那里获取物品数量 n、背包容量 W,以及每个物品的重量和价值。

  2. 动态规划求解:使用二维 DP 表来存储子问题的解,逐步填充表格,最终得到最大价值。

  3. 输出部分:输出背包能容纳的最大价值。

动态规划表 dp
  • dp[i][w] 表示前 i 个物品在背包容量为 w 时的最大价值。

  • dp 表的大小为 (n + 1) x (W + 1),初始化为 0。

状态转移方程
  • 对于第 i 个物品,有两种选择:

    1. 不选择第 i 个物品:最大价值为 dp[i - 1][w]

    2. 选择第 i 个物品:最大价值为 dp[i - 1][w - weights[i - 1]] + values[i - 1]

  • 最终选择两者中的最大值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/963963.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CMake的QML项目中使用资源文件

Qt6.5的QML项目中&#xff0c;我发现QML引用资源文件并不像QtWidgets项目那样直接。 在QtWidgets的项目中&#xff0c;我们一般是创建.qrc​资源文件&#xff0c;然后创建前缀/new/prefix​&#xff0c;再往该前缀中添加一个图片文件&#xff0c;比如&#xff1a;test.png​。…

微信登录模块封装

文章目录 1.资质申请2.combinations-wx-login-starter1.目录结构2.pom.xml 引入okhttp依赖3.WxLoginProperties.java 属性配置4.WxLoginUtil.java 后端通过 code 获取 access_token的工具类5.WxLoginAutoConfiguration.java 自动配置类6.spring.factories 激活自动配置类 3.com…

KNIME:开源 AI 数据科学

KNIME&#xff08;Konstanz Information Miner&#xff09;是一款开源且功能强大的数据科学平台&#xff0c;由德国康斯坦茨大学的软件工程师团队开发&#xff0c;自2004年推出以来&#xff0c;广泛应用于数据分析、数据挖掘、机器学习和可视化等领域。以下是对KNIME的深度介绍…

如何让DeepSeek恢复联网功能?解决(由于技术原因,联网搜索暂不可用)

DeekSeek提示&#xff1a;&#xff08;由于技术原因&#xff0c;联网搜索暂不可用&#xff09; 众所周知&#xff0c;因为海外黑客的ddos攻击、僵尸网络攻击&#xff0c;deepseek的联网功能一直处于宕机阶段&#xff0c;但是很多问题不联网出来的结果都还是2023年的&#xff0c…

【优先算法】专题——前缀和

目录 一、【模版】前缀和 参考代码&#xff1a; 二、【模版】 二维前缀和 参考代码&#xff1a; 三、寻找数组的中心下标 参考代码&#xff1a; 四、除自身以外数组的乘积 参考代码&#xff1a; 五、和为K的子数组 参考代码&#xff1a; 六、和可被K整除的子数组 参…

刷题记录 动态规划-6: 62. 不同路径

题目&#xff1a;62. 不同路径 难度&#xff1a;中等 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#x…

梯度、梯度下降、最小二乘法

在求解机器学习算法的模型参数&#xff0c;即无约束优化问题时&#xff0c;梯度下降是最常采用的方法之一&#xff0c;另一种常用的方法是最小二乘法。 1. 梯度和梯度下降 在微积分里面&#xff0c;对多元函数的参数求∂偏导数&#xff0c;把求得的各个参数的偏导数以向量的形式…

基于STM32的智能安防监控系统

1. 引言 随着物联网技术的普及&#xff0c;智能安防系统在家庭与工业场景中的应用日益广泛。本文设计了一款基于STM32的智能安防监控系统&#xff0c;集成人体感应、环境异常检测、图像识别与云端联动功能&#xff0c;支持实时报警、远程监控与数据回溯。该系统采用边缘计算与…

优化代码性能:利用CPU缓存原理

在计算机的世界里&#xff0c;有一场如同龟兔赛跑般的速度较量&#xff0c;主角便是 CPU 和内存 。龟兔赛跑的故事大家都耳熟能详&#xff0c;兔子速度飞快&#xff0c;乌龟则慢吞吞的。在计算机中&#xff0c;CPU 就如同那敏捷的兔子&#xff0c;拥有超高的运算速度&#xff0…

Notepad++消除生成bak文件

设置(T) ⇒ 首选项... ⇒ 备份 ⇒ 勾选 "禁用" 勾选禁用 就不会再生成bak文件了 notepad怎么修改字符集编码格式为gbk 如图所示

如何创建折叠式Title

文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了SliverGrid组件相关的内容&#xff0c;本章回中将介绍SliverAppBar组件.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1 概念介绍 我们在本章回中介绍的SliverAppBar和普通的AppBar类似&#xff0c;它们的…

K个不同子数组的数目--滑动窗口--字节--亚马逊

Stay hungry, stay foolish 题目描述 给定一个正整数数组 nums和一个整数 k&#xff0c;返回 nums 中 「好子数组」 的数目。 如果 nums 的某个子数组中不同整数的个数恰好为 k&#xff0c;则称 nums 的这个连续、不一定不同的子数组为 「好子数组 」。 例如&#xff0c;[1,2,…

Chromium132 编译指南 - Android 篇(一):编译前准备

1. 引言 欢迎来到《Chromium 132 编译指南 - Android 篇》系列的第一部分。本系列指南将引导您逐步完成在 Android 平台上编译 Chromium 132 版本的全过程。Chromium 作为一款由 Google 主导开发的开源浏览器引擎&#xff0c;为众多现代浏览器提供了核心驱动力。而 Android 作…

webpack传输性能优化

手动分包 基本原理 手动分包的总体思路是&#xff1a;先打包公共模块&#xff0c;然后再打包业务代码。 打包公共模块 公共模块会被打包成为动态链接库&#xff08;dll Dynamic Link Library&#xff09;&#xff0c;并生成资源清单。 打包业务代码 打包时&#xff0c;如果…

6 [新一代Github投毒针对网络安全人员钓鱼]

0x01 前言 在Github上APT组织“海莲花”发布存在后门的提权BOF&#xff0c;通过该项目针对网络安全从业人员进行钓鱼。不过其实早在几年前就已经有人对Visual Studio项目恶意利用进行过研究&#xff0c;所以投毒的手法也不算是新的技术。但这次国内有大量的安全从业者转发该钓…

加载数据,并切分

# Step 3 . WebBaseLoader 配置为专门从 Lilian Weng 的博客文章中抓取和加载内容。它仅针对网页的相关部分&#xff08;例如帖子内容、标题和标头&#xff09;进行处理。 加载信息 from langchain_community.document_loaders import WebBaseLoader loader WebBaseLoader(w…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.5 高级索引应用:图像处理中的区域提取

2.5 高级索引应用&#xff1a;图像处理中的区域提取 目录/提纲 #mermaid-svg-BI09xc20YqcpUam7 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-BI09xc20YqcpUam7 .error-icon{fill:#552222;}#mermaid-svg-BI09xc20…

房屋中介管理系统的设计与实现

房屋中介管理系统的设计与实现 摘要&#xff1a;随着房地产市场的快速发展&#xff0c;房屋中介行业的信息管理需求日益增长。传统的管理方式已无法满足中介公司对房源信息、客户信息以及业务流程的高效管理需求。为此&#xff0c;本文设计并实现了一套房屋中介管理系统&#x…

Vue指令v-on

目录 一、Vue中的v-on指令是什么&#xff1f;二、v-on指令的简写三、v-on指令的使用 一、Vue中的v-on指令是什么&#xff1f; v-on指令的作用是&#xff1a;为元素绑定事件。 二、v-on指令的简写 “v-on&#xff1a;“指令可以简写为”” 三、v-on指令的使用 1、v-on指令绑…

力扣第435场周赛讲解

文章目录 题目总览题目详解3442.奇偶频次间的最大差值I3443.K次修改后的最大曼哈顿距离3444. 使数组包含目标值倍数的最少增量3445.奇偶频次间的最大差值 II 题目总览 奇偶频次间的最大差值I K次修改后的最大曼哈顿距离 使数组包含目标值倍数的最少增量 奇偶频次间的最大差值I…