【论文笔记】最近看的时空数据挖掘综述整理8.27

Deep Learning for Spatio-Temporal Data Mining: A Survey

被引用次数:392

[Submitted on 11 Jun 2019 (v1), last revised 24 Jun 2019 (this version, v2)]

主要内容: 该论文是一篇关于深度学习在时空数据挖掘中的应用的综述。论文首先介绍了时空数据挖掘的背景和意义,然后详细介绍了深度学习在时空数据挖掘中的应用,包括卷积神经网络(CNN)、循环神经网络(RNN)等模型在时空数据中的特征学习、时空数据的表示方法、时空数据的预测和分类等任务。此外,论文还介绍了一些深度学习在时空数据挖掘中的应用案例,如交通流量预测、犯罪预测等。

Ⅰ. introduction
  • 介绍了时空数据挖掘的背景和意义

    • 时空数据挖掘是指从时空数据中发现有用的知识和模式的过程。
    • 时空数据挖掘在很多领域都有应用,如交通、气象、医疗等,可以帮助人们更好地理解和预测现象。
  • 传统数据挖掘方法在处理时空数据时的局限性。

    • 随着时空数据集的数量、体积和分辨率的迅速增加,传统的数据挖掘方法,特别是基于统计的方法,已经无法处理这些数据。

    因此,深度学习技术的发展为时空数据挖掘提供了新的机会和挑战。

Ⅱ. categorization of spatio-temporal data
  • 数据类型
    • 点数据
    • 线数据
    • 面数据
  • 数据来源
    • 传感器数据
    • 人工采集数据
    • 模拟数据
  • 数据表示
    • 矢量数据
    • 栅格数据
Ⅲ. Framework
  • ADAIN model :包括了多源数据的特征提取和融合、FNN和RNN模型的特征学习、全连接层的预测等步骤。
  • ST-ResNet : 基于残差神经网络,用于预测城市中每个区域的人流量。该模型框架包括了外部特征和人流量数据的特征提取和融合、残差神经网络的特征学习等步骤。
Ⅳ. Deep Learning Models for addressing different STDM problems

主要介绍了基于深度学习模型解决不同时空数据管理问题的方法。

  • 首先将时空数据管理问题分为不同的类别,包括预测、表示学习、检测、分类、推断/估计、推荐等。
  • 介绍了针对不同类别问题所提出的深度学习模型,包括卷积神经网络、循环神经网络、自编码器、生成对抗网络等。
  • 总结了当前深度学习模型在不同领域的应用,包括交通、气候和天气、人类移动性、基于位置的社交网络、犯罪分析和神经科学等。
Ⅴ. Applications
  • 交通流量预测
  • 按需服务
  • 气候/天气
  • 人流预测
  • 基于位置的社交网络(LBSN)
  • 犯罪预测
  • 神经科学
Ⅵ. Open Problem
  • 模型可解释性
  • 深度学习模型选择
  • STDM任务的扩展应用
  • ST数据集多模态融合

Spatio-Temporal Data Mining: A Survey of Problems and Methods

被引用次数:418

[Submitted on 13 Nov 2017 (v1), last revised 17 Nov 2017 (this version, v2)]

问题&方法
  • 1.轨迹模式挖掘
    • 基于聚类的方法:基于密度聚类、基于网络聚类、基于子轨迹聚类
    • 基于序列模式挖掘的方法:频繁序列挖掘、序列聚类
    • 基于分类的方法:基于决策树分类、基于SVM分类
    • 基于关联规则方法:频繁模式挖掘、关联规则挖掘
  • 2.时空聚类
    • 传统聚类方法:K-means、层次聚类、共享最近邻聚类、归一化割聚类
    • 混合模型方法:高斯混合模型、隐马尔可夫模型
    • 密度聚类方法:DBSCAN聚类、OPTICS聚类
    • 基于图的聚类方法:谱聚类,模块度最优化聚类
    • 基于子序列聚类方法:基于动态时间规整的子序列聚类
  • 3.时空分类
    • 基于统计学习的方法:支持向量机、决策树、随机森林
    • 基于聚类的方法:K-mean聚类、层次聚类、DBSCAN聚类
    • 基于贝叶斯网络的方法:动态贝叶斯网络、半马尔可夫决策过程
    • 基于规则的方法:分类规则、关联规则
    • 基于神经网络的方法:卷积神经网络、循环神经网络
  • 4.时空关联规则挖掘
    • 基于时空窗口的方法:滑动时空窗口、固定时空窗口
    • 基于序列模式挖掘的方法:频繁序列挖掘、序列聚类
    • 基于关联规则挖掘的方法:频繁模式挖掘、关联规则挖掘
  • 5.时空异常检测
    • 基于统计学习的方法:支持向量机、随机森林、神经网络
    • 基于聚类的方法:K-means、DBSCAN聚类
    • 基于密度的方法:LOF、OPTICS
    • 基于时空窗口的方法:滑动时空窗口、固定时空窗口
    • 基于时空关联规则的方法:时空关联规则挖掘
  • 6.时空预测
    • 基于时间序列的方法:ARIMA模型、指数平滑模型、状态空间模型
    • 基于回归的方法:线性回归、岭回归、Lasso回归
    • 基于机器学习的方法:支持向量机、随机森林、神经网络
    • 基于时空关联规则的方法:时空关联规则挖掘
    • 基于深度学习的方法:卷积神经网络、循环神经网络

Transformers in Time Series: A Survey

被引用次数:188

[Submitted on 15 Feb 2022 (v1), last revised 11 May 2023 (this version, v5)]

主要内容

本论文是一篇关于时间序列Transformer的综述,系统地回顾了Transformer在时间序列建模中的应用。论文首先介绍了Transformer的基本概念,然后从网络修改和应用领域的角度提出了一个新的分类法。在网络修改方面,论文讨论了对Transformer进行的低层次(即模块)和高层次(即架构)的改进,以优化时间序列建模的性能。在应用方面,论文分析和总结了用于流行的时间序列任务(包括预测、异常检测和分类)的Transformer。对于每个时间序列Transformer,论文分析了其见解、优点和局限性。为了提供有效使用Transformer进行时间序列建模的实用指南,论文进行了广泛的实证研究,包括鲁棒性分析、模型大小分析和季节趋势分解分析。最后,论文讨论了时间序列Transformer的未来发展方向。

主要贡献

本论文的主要贡献在于系统地回顾了Transformer在时间序列建模中的应用,提出了一个新的分类法,并分析了每个时间序列Transformer的见解、优点和局限性。此外,论文还进行了广泛的实证研究,为使用Transformer进行时间序列建模提供了实用指南。

网络修改方面的改进
  • 位置编码:将输入时间序列的位置信息编码为向量,并注入到模型中作为一个额外的输入。
  • 门控线性单元:GLU可以在Transformer中引入非线性性,从而提高模型的表达能力。
  • 多层感知机:可以使用MLP来提高模型的表达能力。
  • 自适应注意力(Adaptive Attention):可以根据输入序列的特征自适应地调整注意力权重,从而提高模型的性能。
  • 时间卷积(Temporal Convolution):可以提高模型的表达能力。
  • 时序卷积网络(Temporal Convolutional Networks,TCN)
  • 时序自注意力(Temporal Self-Attention)
Table 1: Complexity comparisons of popular time series Transformers with different attention modules.
TrainingTesting
MethodsTimeMemorySteps
TransformerO(N^2)O(N^2)N
LogTransO(NlogN)O(NlogN)1
InformerO(NlogN)O(NlogN)1
AutoformerO(NlogN)O(NlogN)1
PyraformerO(N)O(N)1
QuatformerO(2cN)O(2cN)1
FEDformerO(N)O(N)1
CrossformerO(DN^2/(Lseg^2))O(N)1

Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A Survey

被引用次数:9

[Submitted on 25 Mar 2023 (v1), last revised 27 Apr 2023 (this version, v2)]

本文的主要内容是关于Spatio-Temporal Graph Neural Networks(STGNN)在城市计算中的预测学习应用。文章介绍了STGNN技术的基本原理、应用场景、算法模型和实验结果,并探讨了STGNN在城市交通、气象预测、社交网络等领域的应用前景。

STGNN应用于城市计算

在这里插入图片描述

STGNN基本原理

将图神经网络(GNNs)和各种时间学习方法相结合,以提取复杂的时空依赖关系。具体来说,STGNN通过构建时空数据,将空间信息和时间信息相结合,然后使用GNNs对空间信息进行建模,使用时间学习方法对时间信息进行建模,最后将两者结合起来,以实现对复杂时空依赖关系的建模和预测。
在这里插入图片描述

基本架构
  • GNN
    • Spectral Graph Convolutional Network
    • Spatial Graph Convolutional Network
    • Graph Attention Network
  • Recurrent Neural Networks
    • Long-Short Term Memory Network
    • Gated Recurrent Unit Network
  • Temporal Convolutional Netowrks
    • Gated Temporal Convolutional Network
    • Causal Temporal Convolutional Network
  • Temporal Self-Attention Networks
  • Spatio-Temporal Fusion Neural Architecture
    • Factorized Neural Architecture
    • Coupled Neural Architecture

在这里插入图片描述

应用场景
  • 交通方面
    • 交通需求预测
    • 交通意外预测
    • 交通用时预测
    • 交通轨迹预测
  • 环境方面
    • 空气质量预测
    • 气候预测
  • 公共安全方面
    • 犯罪频率预测
    • 灾难方位预测
  • 公共健康方面
    • 传染病预测
    • 救护车需求预测
  • 其他应用领域:能源、经济、金融、生产
STGNN变体
  • 空间学习方法
    • Multi-Graph Convolution
    • Adaptive Graph Learning
    • Muti-Scale Spatial Learning
    • Heterogeneous spatial learning
  • 时间学习方法
    • Multi-Scale Temporal Learning
    • Multi-Granularity Temporal Learning
    • Decomposition Temporal Learning
  • 时空融合方法
    • Spatio-Temporal Joint Modeling
    • Automated Spatio-Temporal Fusion
先进学习框架
  • Adversarial Learning
  • Meta Learning
  • Self-Supervised Learning
  • Continuous Spatio-Temporal modeling
  • Physics-Informed Learning
  • Transfer Learning

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/96382.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从传统软件开发到云原生转型:大数据和AI如何引领软件开发的新趋势

文章目录 **1. 数据驱动的开发:****2. 智能化的用户体验:****3. 云原生的可扩展性:****4. 实时处理和决策:****5. 自动化和效率提升:****6. 持续集成和交付的加速:****7. 数据安全和隐私:****8.…

1427205-93-3|Fmoc-Ser(Ac4Manα1-2Ac3Manα1-2Ac3Manα)-OH是指糖类与氨基酸通过糖苷键连接而成的化合物

糖基化氨基酸是指糖类与氨基酸通过糖苷键连接而成的化合物。这种糖苷键的形成是由于糖类的末端羟基与氨基酸的氨基之间发生脱水缩合反应糖。基化氨基酸具有多种生物学功能,如作为酶、激素和抗体的成分,参与细胞识别和信息传递等。 在生物体内&#xff0c…

【C++小项目】实现一个日期计算器

目录 Ⅰ. 引入 Ⅱ. 列轮廓 Ⅲ. 功能的实现 构造函数 Print 判断是否相等 | ! ➡️: ➡️!: 判断大小 > | > | < | < ➡️>&#xff1a; ➡️<&#xff1a; ➡️>&#xff1a; ➡️<&#xff1a; 加减天数 | | - | - ➡️&#xff1a;…

Java CompletableFuture 详细使用教程与实践

一、Java CompletableFuture 详细使用教程 Java 8引入了一种强大的异步编程工具&#xff1a;CompletableFuture。它提供了一种处理异步计算的方式&#xff0c;使得你可以在计算完成时获取结果&#xff0c;或者将一个或多个 CompletableFuture 的结果组合在一起。本部分将详细解…

ABeam×Startup | 德硕管理咨询(深圳)创新研究团队拜访微漾创客空间

近日&#xff0c;德硕管理咨询&#xff08;深圳&#xff09;&#xff08;以下简称&#xff1a;“ABeam-SZ”&#xff09;创新研究团队前往微漾创客空间&#xff08;以下简称&#xff1a;微漾&#xff09;拜访参观&#xff0c;并展开合作交流。会议上&#xff0c;双方相互介绍了…

C语言 - 结构体、结构体数组、结构体指针和结构体嵌套

结构体的意义 问题&#xff1a;学籍管理需要每个学生的下列数据&#xff1a;学号、姓名、性别、年龄、分数&#xff0c;请用 C 语言程序存储并处理一组学生的学籍。 单个学生学籍的数据结构&#xff1a; 学号&#xff08;num&#xff09;&#xff1a; int 型姓名&#xff08;…

Dimensions网站——一个链接研究知识系统

Dimensions网站——一个链接研究知识系统 一、Dimensions网站简介 Dimensions 是一个链接的研究知识系统&#xff0c;它重新构想了发现和研究的获取。Dimensions 由 Digital Science 与全球 100 多个领先研究组织合作开发&#xff0c;汇集了资助、出版物、引文、替代指标、临…

如何在不使用任何软件的情况下将 PDF 转换为 Excel

通常&#xff0c;您可能会遇到这样的情况&#xff1a;您需要的数据不在 Excel 工作表中&#xff0c;而是以数据表形式出现在 PDF 文件中。为了将此数据放入 Excel 工作表中&#xff0c;如果您尝试将数字复制并粘贴到电子表格中&#xff0c;则列/行将无法正确复制和对齐。因此&a…

【数据结构】如何用栈实现队列?图文解析(LeetCode)

LeetCode链接&#xff1a;232. 用栈实现队列 - 力扣&#xff08;LeetCode&#xff09; 注&#xff1a;本文默认读者已掌握栈与队列的基本操作 可以看这篇文章熟悉知识点&#xff1a;【数据结构】栈与队列_字节连结的博客-CSDN博客 目录 做题思路 代码实现 1. MyQueue 2. …

选择排序:用C语言打造高效的排序算法

本篇博客会讲解如何使用C语言实现选择排序。 下面我来画图讲解选择排序的思路。 假设有一个数组&#xff0c;其初始状态如下&#xff0c;我们想把这个数组排成升序。 首先我们标明范围&#xff0c;即[begin, end]&#xff0c;一开始begin(b)和end(e)分别表示数组的第一个位置…

运维Shell脚本小试牛刀(一)

运维Shell脚本小试牛刀(一) 运维Shell脚本小试牛刀(二) 运维Shell脚本小试牛刀(三)::$(cd $(dirname $0)&#xff1b; pwd)命令详解 一: Shell中循环剖析 for 循环....... #!/bin/bash - # # # # FILE: countloop.sh # …

【ES】笔记-集合介绍与API

集合是一种不允许值重复的顺序数据结构。 通过集合我们可以进行并集、交集、差集等数学运算&#xff0c; 还会更深入的理解如何使用 ECMAScript 2015(ES2015)原生的 Set 类。 构建数据集合 集合是由一组无序且唯一(即不能重复)的项组成的。该数据结构使用了与有限集合相同的数…

文件修改时间能改吗?怎么改?

文件修改时间能改吗&#xff1f;怎么改&#xff1f;修改时间是每个电脑文件具备的一个属性&#xff0c;它代表了这个电脑文件最后一次的修改时间&#xff0c;是电脑系统自动赋予文件的&#xff0c;相信大家都应该知道。我们右击鼠标某个文件&#xff0c;然后点击弹出菜单里面的…

ELK安装、部署、调试(一)设计规划及准备

一、整体规划如图&#xff1a; 【filebeat】 需要收集日志的服务器&#xff0c;安装filebeat软件&#xff0c;用于收集日志。logstash也可以收集日志&#xff0c;但是占用的系统资源过大&#xff0c;所以使用了filebeat来收集日志。 【kafka】 接收filebeat的日志&#xff…

【Java笔记】分布式id生成-雪花算法

随着业务的增长&#xff0c;有些表可能要占用很大的物理存储空间&#xff0c;为了解决该问题&#xff0c;后期使用数据库分片技术。将一个数据库进行拆分&#xff0c;通过数据库中间件连接。如果数据库中该表选用ID自增策略&#xff0c;则可能产生重复的ID&#xff0c;此时应该…

【硬件设计】硬件学习笔记一--元器件的介绍与选型

硬件学习笔记一--元器件的选型 一、电阻1.1 电阻的分类1.2 电阻的选型 二、电容2.1 陶瓷电容2.2 钽电容2.3 铝电解电容2.4 电容选型 三、电感3.1 定义与介绍3.2 电感的分类3.3 电感的参数 四、磁珠4.1 磁珠的介绍4.2 磁珠的参数 五、二极管5.1 定义5.2 稳压管5.3 肖特基二极管5…

无涯教程-聚类算法 - K-Means

K-均值聚类算法计算质心并进行迭代&#xff0c;直到找到最佳质心为止&#xff0c;它假定群集的数目是已知的&#xff0c;它也称为扁平聚类算法。通过算法从数据中识别出的簇数以K均值中的" K"表示。 在该算法中&#xff0c;将数据点分配给群集&#xff0c;以使数据点…

五、Kafka消费者

目录 5.1 Kafka的消费方式5.2 Kafka 消费者工作流程1、总体流程2、消费者组原理3、消费者组初始化流程4、消费者组详细消费流程 5.3 消费者API1 独立消费者案例&#xff08;订阅主题&#xff09;2 独立消费者案例&#xff08;订阅分区&#xff09;3 消费者组案例 5.4 生产经验—…

Anolis 8.6 下 Redis 7.2.0 集群搭建和配置

Redis 7.2.0 搭建和集群配置 一.Redis 下载与单机部署1.Redis 下载2.虚拟机配置3.Redis 单机源码安装和测试4.Java 单机连接测试1.Pom 依赖2.配置文件3.启动类4.配置类5.单元测试6.测试结果 二.Redis 集群部署1.主从1.从节点配置2.Java 测试 2.哨兵1.哨兵节点配置2.复制一个哨兵…

eslint

什么是eslint ESLint 是一个根据方案识别并报告 ECMAScript/JavaScript 代码问题的工具&#xff0c;其目的是使代码风格更加一致并避免错误。 安装eslint npm init eslint/config执行后会有很多选项&#xff0c;按照自己的需求去选择就好&#xff0c;运行成功后会生成 .esli…