目录
- 5.1 Kafka的消费方式
- 5.2 Kafka 消费者工作流程
- 1、总体流程
- 2、消费者组原理
- 3、==消费者组初始化流程==
- 4、==消费者组详细消费流程==
- 5.3 消费者API
- 1 独立消费者案例(订阅主题)
- 2 独立消费者案例(订阅分区)
- 3 消费者组案例
- 5.4 生产经验——分区的分配以及再平衡
- 1、 Range 以及再平衡
- 1)Range 分区策略原理
- 2)Range 分区分配策略demo演示
- 3)Range 分区分配再平衡案例
- 2 RoundRobin 以及再平衡
- 1)RoundRobin 分区策略原理
- 2)RoundRobin 分区分配策略demo
- 3)RoundRobin 分区分配再平衡案例
- 3 Sticky 以及再平衡
- 1) 定义
- 2) Sticky 分区策略demo演示
- 3)Sticky 分区分配再平衡
- 5.5 offset位移
- 1、offset 的默认维护位置
- 1)__consumer_offsets 查看
- 2、自动提交 offset
- 1)消费者自动提交 offset
- 3、手动提交 offset
- 1)同步提交 offset
- 2)异步提交 offset
- 4、指定Offset进行消费
- 5、指定时间进行消费
- 6 、漏消费和重复消费
- 7 生产经验——数据积压
5.1 Kafka的消费方式
pull(拉)模 式:consumer采用从broker中主动拉取数据。Kafka采用这种方式。
缺点: pull模式不足之处是,如 果Kafka没有数据,消费者可能会陷入循环中,一直返回空数据
push(推)模式:Kafka没有采用这种方式,因为由broker决定消息发送速率,很难适应所有消费者的消费速率
5.2 Kafka 消费者工作流程
1、总体流程
【注意】
- 消费者只能从主分区上拉取数据,从节点起到同步和冗余数据的作用
- 每个分区的数据只能由消费者组中一个消费者消费
- 一个消费者可以消费多个分区数据
- 每个消费者的offset由消费者提交到系统主题保存
2、消费者组原理
Consumer Group(CG):消费者组,由多个consumer组成。形成一个消费者组的条件,是所有消费者的groupid相同。
- 消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费。
- 消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者
3、消费者组初始化流程
4、消费者组详细消费流程
5.3 消费者API
1 独立消费者案例(订阅主题)
public class CustomConsumer {
public static void main(String[] args) {
// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.239.11:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test5");
// 设置分区分配策略
// 1 创建一个消费者 "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
kafkaConsumer.commitAsync();
}
}
}
2 独立消费者案例(订阅分区)
public class CustomConsumerPartition {
public static void main(String[] args) {
// 0 配置
Properties properties = new Properties();
// 连接
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");
// 1 创建一个消费者
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题对应的分区
ArrayList<TopicPartition> topicPartitions = new ArrayList<>();
topicPartitions.add(new TopicPartition("first",0));
kafkaConsumer.assign(topicPartitions);
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
}
}
}
3 消费者组案例
1)需求:测试同一个主题的分区数据,只能由一个消费者组中的一个消费
5.4 生产经验——分区的分配以及再平衡
1、 Range 以及再平衡
1)Range 分区策略原理
【缺点】 容易产生数据倾斜
2)Range 分区分配策略demo演示
①、创建7个分区的topic
②、启动 CustomProducer 生产者,发送7条消息到 0 - 6号分区
public class CustomProducerCallback {
public static void main(String[] args) throws InterruptedException {
// 0 配置
Properties properties = new Properties();
// 连接集群 bootstrap.servers
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.239.11:9092");
// 指定对应的key和value的序列化类型 key.serializer
// properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
// 1 创建kafka生产者对象
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
// 2 发送数据
for (int i = 0; i < 7; i++) {
kafkaProducer.send(new ProducerRecord<>("test", i, i + "", "houchen" + i), new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception == null) {
System.out.println("主题: " + metadata.topic() + " 分区: " + metadata.partition());
}
}
});
Thread.sleep(2);
}
// 3 关闭资源
kafkaProducer.close();
}
}
③、启动三个消费者,组成一个消费者组,查看各个消费者的消费情况
由下述结果确实可以看到 Kafka 默认的分区分配策略就是 Range
public class CustomConsumer {
public static void main(String[] args) {
// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.239.11:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"mygroup");
// 1 创建一个消费者
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("test");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
kafkaConsumer.commitAsync();
}
}
}
3)Range 分区分配再平衡案例
(1)停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)。
1 号消费者:消费到 3、4 号分区数据。
2 号消费者:消费到 5、6 号分区数据。
0 号消费者的任务会整体被分配
到 1 号消费者或者 2 号消费者。
说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。
(2)再次重新发送消息观看结果(45s 以后)。
1 号消费者:消费到 0、1、2、3 号分区数据。
2 号消费者:消费到 4、5、6 号分区数据。
说明:消费者 0 已经被踢出消费者组,所以重新按照 range 方式分配。
2 RoundRobin 以及再平衡
1)RoundRobin 分区策略原理
2)RoundRobin 分区分配策略demo
①、依次在 CustomConsumer、CustomConsumer1、CustomConsumer2 三个消费者代
码中修改分区分配策略为 RoundRobin
//RoundRobin 分区分配策略
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,"org.apache.kafka.clients.consumer.RoundRobinAssignor");
②、重启 3 个消费者,重复发送消息的步骤,观看分区结果
3)RoundRobin 分区分配再平衡案例
停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)。
1 号消费者:消费到 2、5 号分区数据
2 号消费者:消费到 4、1 号分区数据
0 号消费者的任务会按照 RoundRobin 的方式,把数据轮询分成 0 和6 、 3 号分区数据,分别由 1 号消费者或者 2 号消费者
消费。
说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行
(2)再次重新发送消息观看结果(45s 以后)。
1 号消费者:消费到 0、2、4、6 号分区数据
2 号消费者:消费到 1、3、5 号分区数据
说明:消费者 0 已经被踢出消费者组,所以重新按照 RoundRobin 方式分配。
3 Sticky 以及再平衡
1) 定义
粘性分区定义:可以理解为分配的结果带有“粘性的”。即在执行一次新的分配之前,考虑上一次分配的结果,尽量少的调整分配的变动,可以节省大量的开销
2) Sticky 分区策略demo演示
3)Sticky 分区分配再平衡
5.5 offset位移
1、offset 的默认维护位置
__consumer_offsets 主题里面采用 key 和 value 的方式存储数据。key 是 group.id+topic+分区号,value 就是当前 offset 的值。每隔一段时间,kafka 内部会对这个 topic 进行compact,也就是每个 group.id+topic+分区号就保留最新数据
1)__consumer_offsets 查看
2、自动提交 offset
为了使我们能够专注于自己的业务逻辑,Kafka提供了自动提交offset的功能。
自动提交offset的相关参数:
- enable.auto.commit:是否开启自动提交offset功能,默认是true
- auto.commit.interval.ms:自动提交offset的时间间隔,默认是5s
1)消费者自动提交 offset
// 自动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,true);
3、手动提交 offset
虽然自动提交offset十分简单便利,但由于其是基于时间提交的,开发人员难以把握offset提交的时机。因此Kafka还提供了手动提交offset的API
手动提交offset的方法有两种:分别是commitSync(同步提交)和commitAsync(异步提交)。
两者的相同点是,都会将本次提交的一批数据最高的偏移量提交;
不同点是,同步提交阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而异步提交则没有失败重试机制,故有可能提交失败。
- commitSync(同步提交):必须等待offset提交完毕,再去消费下一批数据。
- commitAsync(异步提交) :发送完提交offset请求后,就开始消费下一批数据了。
1)同步提交 offset
由于同步提交 offset 有失败重试机制,故更加可靠,但是由于一直等待提交结果,提交的效率比较低。以下为同步提交 offset 的示例。
public class CustomConsumerByHandSync {
public static void main(String[] args) {
// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.239.11:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");
// 手动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);
// 1 创建一个消费者 "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
// 手动提交offset
kafkaConsumer.commitSync();
}
}
}
2)异步提交 offset
虽然同步提交 offset 更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此吞吐量会受到很大的影响。因此更多的情况下,会选用异步提交 offset 的方式。
public class CustomConsumerByHandSync {
public static void main(String[] args) {
// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.239.11:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");
// 手动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);
// 1 创建一个消费者 "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
// 手动提交offset
kafkaConsumer.commitAsync();
}
}
}
4、指定Offset进行消费
public class CustomConsumerSeek {
public static void main(String[] args) {
// 0 配置信息
Properties properties = new Properties();
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.239.11:9092");
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test3");
// 1 创建消费者
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题
ArrayList<String> topics = new ArrayList<>();
topics.add("second");
kafkaConsumer.subscribe(topics);
// 指定位置进行消费
Set<TopicPartition> assignment = kafkaConsumer.assignment();
// 保证分区分配方案已经制定完毕
while (assignment.size() == 0){
kafkaConsumer.poll(Duration.ofSeconds(1));
assignment = kafkaConsumer.assignment();
}
// 指定消费的offset
for (TopicPartition topicPartition : assignment) {
kafkaConsumer.seek(topicPartition,100);
}
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
}
}
}
5、指定时间进行消费
需求:在生产环境中,会遇到最近消费的几个小时数据异常,想重新按照时间消费。
例如要求按照时间消费前一天的数据,怎么处理?
6 、漏消费和重复消费
7 生产经验——数据积压