机器学习--概览

一、机器学习基础概念

1. 定义

机器学习(Machine Learning, ML):通过算法让计算机从数据中自动学习规律,并利用学习到的模型进行预测或决策,而无需显式编程。

2. 与编程的区别

传统编程机器学习
输入:规则+数据 → 输出:结果输入:数据+结果 → 输出:规则
需要人工编写逻辑自动发现数据中的模式

3. 核心要素

  • 数据:模型学习的原材料(结构化/非结构化)
  • 特征(Feature):数据的可量化属性(如房价预测中的面积、地段)
  • 标签(Label):监督学习中的目标变量(如房价数值)
  • 模型:从数据中学习到的数学函数(如 y = w 1 x 1 + w 2 x 2 + b y = w_1x_1 + w_2x_2 + b y=w1x1+w2x2+b
  • 损失函数:衡量预测值与真实值的差距(如均方误差 MSE)
  • 优化算法:调整模型参数以最小化损失(如梯度下降)

二、机器学习分类

1. 按学习方式分类

(1) 监督学习(Supervised Learning)
  • 特点:数据包含输入特征和对应标签
  • 典型任务
    • 分类(预测离散类别):垃圾邮件识别(二分类)、手写数字识别(多分类)
    • 回归(预测连续数值):房价预测、股票走势预测
  • 常用算法
    • 线性回归(Linear Regression)
    • 支持向量机(SVM)
    • 随机森林(Random Forest)
    • 神经网络(Neural Networks)
(2) 无监督学习(Unsupervised Learning)
  • 特点:数据只有输入特征,无标签
  • 典型任务
    • 聚类:客户分群、新闻主题发现
    • 降维:可视化高维数据(t-SNE)
    • 异常检测:信用卡欺诈识别
  • 常用算法
    • K-Means聚类
    • 主成分分析(PCA)
    • 自编码器(Autoencoder)
(3) 强化学习(Reinforcement Learning, RL)
  • 特点:智能体通过与环境交互获得奖励信号学习策略
  • 典型应用:AlphaGo、自动驾驶决策
  • 核心要素
    • 状态(State)
    • 动作(Action)
    • 奖励(Reward)
    • 策略(Policy)

2. 按模型类型分类

类型特点算法示例
参数模型参数数量固定(如线性模型)线性回归、逻辑回归
非参数模型参数数量随数据增长KNN、决策树
判别模型直接学习决策边界SVM、神经网络
生成模型学习数据分布朴素贝叶斯、GAN

三、机器学习流程

1. 标准工作流

数据收集
数据预处理
特征工程
模型选择
模型训练
模型评估
是否达标?
部署

2. 关键步骤详解

(1) 数据预处理
  • 缺失值处理:删除/填充(均值、中位数)
  • 异常值检测:Z-Score、IQR方法
  • 数据标准化:Min-Max缩放、Z-Score标准化
  • 类别编码:One-Hot编码、标签编码
(2) 特征工程
  • 特征选择:方差阈值、卡方检验
  • 特征构造:组合特征(如面积=长×宽)
  • 时间序列特征:滑动窗口统计
  • 文本特征:TF-IDF、词嵌入
(3) 模型训练
  • 数据集划分:训练集(60-80%)、验证集(10-20%)、测试集(10-20%)
  • 超参数调优:网格搜索、随机搜索、贝叶斯优化
  • 防止过拟合:交叉验证、早停(Early Stopping)
(4) 模型评估
任务类型评估指标
分类准确率、精确率、召回率、F1 Score、ROC-AUC
回归MAE、MSE、R²
聚类轮廓系数、Calinski-Harabasz指数

四、经典算法原理

1. 线性回归(Linear Regression)

  • 核心思想:找到最佳拟合直线 y = w T x + b y = w^Tx + b y=wTx+b
  • 损失函数 M S E = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE = \frac{1}{n}\sum_{i=1}^n(y_i - \hat{y}_i)^2 MSE=n1i=1n(yiy^i)2
  • 求解方法
    • 解析解: w = ( X T X ) − 1 X T y w = (X^TX)^{-1}X^Ty w=(XTX)1XTy (适用于小数据)
    • 数值解:梯度下降(大数据场景)

2. 决策树(Decision Tree)

  • 分裂准则
    • 信息增益(ID3算法)
    • 基尼不纯度(CART算法)
  • 剪枝策略:预剪枝(最大深度限制)、后剪枝(代价复杂度剪枝)

3. 随机森林(Random Forest)

  • 核心机制
    • Bagging:通过自助采样(Bootstrap)生成多个子数据集
    • 特征随机性:每个节点分裂时随机选择部分特征
  • 预测方式:分类任务投票,回归任务平均

4. 支持向量机(SVM)

  • 最大间隔分类器:寻找使间隔最大的超平面
  • 核技巧:通过核函数将数据映射到高维空间(常用RBF核)
  • 数学形式: f ( x ) = s i g n ( ∑ i = 1 n α i y i K ( x i , x ) + b ) f(x) = sign(\sum_{i=1}^n \alpha_i y_i K(x_i, x) + b) f(x)=sign(i=1nαiyiK(xi,x)+b)

五、实战案例解析

案例1:鸢尾花分类(监督学习)

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

# 加载数据
iris = load_iris()
X, y = iris.data, iris.target

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 训练模型
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)

# 评估
print("准确率:", model.score(X_test, y_test))

案例2:客户分群(无监督学习)

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

# 生成模拟数据
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.6)

# 聚类分析
kmeans = KMeans(n_clusters=4)
clusters = kmeans.fit_predict(X)

# 可视化
plt.scatter(X[:,0], X[:,1], c=clusters, cmap='viridis')
plt.show()

在这里插入图片描述


六、挑战与解决方案

常见问题解决方法
数据不平衡SMOTE过采样、类别权重调整
维度灾难特征选择、降维技术(PCA)
过拟合L1/L2正则化、Dropout(神经网络)
计算效率低特征哈希、模型量化

线性回归算法

以下是线性回归的全面详解,包含基础概念、数学原理、实战应用及进阶技巧,适合零基础学习者系统掌握:


线性回归终极指南

一、核心概念全景图

线性回归
简单线性回归
多元线性回归
正则化回归
单特征预测
多特征组合
Lasso/Ridge/ElasticNet

二、算法深度解析

1. 数学表达形式
  • 简单线性回归
    y = w 1 x + b y = w_1x + b y=w1x+b

    • w₁:斜率(特征权重)
    • b:截距(偏置项)
  • 多元线性回归
    y = w 1 x 1 + w 2 x 2 + . . . + w n x n + b y = w_1x_1 + w_2x_2 + ... + w_nx_n + b y=w1x1+w2x2+...+wnxn+b

    • 示例:房价 = 3.5×面积 + 1.2×卧室数 + 20
2. 损失函数可视化

均方误差(MSE)
M S E = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2 MSE=n1i=1n(yiy^i)2
在这里插入图片描述

3. 参数求解

更新规则
w = w − α ∂ M S E ∂ w w = w - \alpha \frac{\partial MSE}{\partial w} w=wαwMSE
b = b − α ∂ M S E ∂ b b = b - \alpha \frac{\partial MSE}{\partial b} b=bαbMSE

学习率(α)的影响

  • 太小:收敛慢
  • 太大:可能无法收敛

三、实战全流程演练

案例:预测汽车油耗(MPG)

数据集

气缸数排量马力重量油耗
42.5120150028
63.0180200022
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

# 加载数据
data = pd.read_csv('auto-mpg.csv')
X = data[['cylinders', 'displacement', 'horsepower', 'weight']]
y = data['mpg']

# 数据预处理
X.fillna(X.mean(), inplace=True)  # 处理缺失值
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)

# 评估模型
print("训练集R²:", model.score(X_train, y_train))
print("测试集R²:", model.score(X_test, y_test))

# 预测新数据
new_car = [[4, 2.0, 110, 1400]]
predicted_mpg = model.predict(new_car)
print("预测油耗:", predicted_mpg[0])
关键输出解读:
  • 系数权重model.coef_ 显示每个特征的影响程度
  • 截距model.intercept_ 表示基础油耗值
  • R²分数:0.8表示模型能解释80%的数据变化

四、算法变种与改进

1. 多项式回归

处理非线性关系
y = w 1 x + w 2 x 2 + b y = w_1x + w_2x^2 + b y=w1x+w2x2+b

from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(degree=2)
X_poly = poly.fit_transform(X)
model.fit(X_poly, y)
2. 正则化回归
类型公式特点
Ridge回归添加L2正则项: λ ∑ w i 2 \lambda\sum w_i^2 λwi2防止过拟合,保留所有特征
Lasso回归添加L1正则项:$\lambda\sumw_i
ElasticNetL1+L2组合平衡特征选择与稳定性
from sklearn.linear_model import Lasso

lasso = Lasso(alpha=0.1)  # 正则化强度
lasso.fit(X_train, y_train)

五、模型诊断与优化

1. 常见问题诊断表
现象可能原因解决方案
训练集R²高,测试集低过拟合增加正则化、减少特征
所有系数接近零特征尺度差异大数据标准化
残差不随机分布非线性关系添加多项式特征
2. 特征工程技巧
  • 分箱处理:将连续年龄分段为青年/中年/老年
  • 交互特征:创建面积=长×宽等组合特征
  • 离散化:将温度分为低温/常温/高温
3. 超参数调优
from sklearn.model_selection import GridSearchCV

params = {'alpha': [0.001, 0.01, 0.1, 1]}
grid = GridSearchCV(Lasso(), params, cv=5)
grid.fit(X, y)
print("最佳参数:", grid.best_params_)

六、数学推导(简化版)

1. 最小二乘法推导

目标:找到使 ∑ ( y i − w x i − b ) 2 \sum(y_i - wx_i - b)^2 (yiwxib)2最小的w和b

求导过程

  1. 对w求导:
    ∂ ∂ w = − 2 ∑ x i ( y i − w x i − b ) = 0 \frac{\partial}{\partial w} = -2\sum x_i(y_i - wx_i - b) = 0 w=2xi(yiwxib)=0

  2. 对b求导:
    ∂ ∂ b = − 2 ∑ ( y i − w x i − b ) = 0 \frac{\partial}{\partial b} = -2\sum(y_i - wx_i - b) = 0 b=2(yiwxib)=0

解得
w = n ∑ x i y i − ∑ x i ∑ y i n ∑ x i 2 − ( ∑ x i ) 2 w = \frac{n\sum x_iy_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2} w=nxi2(xi)2nxiyixiyi
b = ∑ y i − w ∑ x i n b = \frac{\sum y_i - w\sum x_i}{n} b=nyiwxi


愿得一心人,白头不相离。 —卓文君

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/963358.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何使用SliverGrid组件

文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了SliverList组件相关的内容,本章回中将介绍SliverGrid组件.闲话休提,让我们一起Talk Flutter吧。 1 概念介绍 我们在本章回中介绍的SliverGrid组件是一种网格类组件,主要用来…

大模型培训讲师老师叶梓分享:DeepSeek多模态大模型janus初探

以下视频内容为叶梓分享DeepSeek多模态大模型janus的部署,并验证其实际效果,包括图生文和文生图两部分。 叶梓老师人工智能培训分享DeepSeek多模态大模型janus初探 DeepSeek 的多模态大模型 Janus 是一款强大的 AI 模型,专注于图像和文本的多…

一文掌握ADB的安装及使用

文章目录 一、什么是ADB?二、 安装ADB2.1 下载ADB2.2 配置环境变量 三、连接Android设备四、 常用ADB命令五、ADB高级功能5.1 屏幕截图和录制5.2 模拟按键输入5.3 文件管理5.4 系统设置管理5.5 系统操作指令5.6 日志操作指令5.7 APK操作指令5.8 设备重启和恢复 六、…

【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈机器学习与数据挖掘实战 ⌋ ⌋ ⌋ 机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联…

bat脚本实现自动化漏洞挖掘

bat脚本 BAT脚本是一种批处理文件,可以在Windows操作系统中自动执行一系列命令。它们可以简化许多日常任务,如文件操作、系统配置等。 bat脚本执行命令 echo off#下面写要执行的命令 httpx 自动存活探测 echo off httpx.exe -l url.txt -o 0.txt nu…

Kafka下载

一、Kafka下载 下载地址:https://kafka.apache.org/downloads 二、Kafka安装 因为选择下载的是 .zip 文件,直接跳过安装,一步到位。 选择在任一磁盘创建空文件夹(不要使用中文路径),解压之后把文件夹内容…

学习日记-250202

现在开始要继续写我的日记了......(也可以当作笔记吧) 一.论文 Prompt Transfer for Dual-Aspect Cross Domain Cognitive Diagnosis 主要内容: 主要是加入prompt提示, 为重叠实体设计个性化的提示,为非重叠实体设计共…

【人工智能学习笔记 一】 AI分层架构、基本概念分类与产品技术架构

新的一年2025要对AI以及LLM有个强化的学习,所以第一篇先对整体有个大概的认知,一直分不清LLM和AI的关系,在整个体系里的位置,以及AIGC是什么东西,AI AGENT类似豆包等和大语言模型的具体关系是什么,整个AI的…

git多人协作

目录 一、项目克隆 二、 1、进入克隆仓库设置 2、协作处理 3、冲突处理 4、多人协作分支的推送拉取删除 1、分支推送(2种) 2、远程分支拉取(2种) 3、远程分支删除 一、项目克隆 git clone 画船听雨眠/test1 (自定义的名…

线性数据结构:单向链表

放弃眼高手低,你真正投入学习,会因为找到一个新方法产生成就感,学习不仅是片面的记单词、学高数......只要是提升自己的过程,探索到了未知,就是学习。 目录 一.链表的理解 二.链表的分类(重点理解&#xf…

linux下ollama更换模型路径

Linux下更换Ollama模型下载路径指南   在使用Ollama进行AI模型管理时,有时需要根据实际需求更改模型文件的存储路径。本文将详细介绍如何在Linux系统中更改Ollama模型的下载路径。 一、关闭Ollama服务   在更改模型路径之前,需要先停止Ollama服务。…

影视文件大数据高速分发方案

在当今的数字时代,影视行业的内容创作和传播方式经历了翻天覆地的变化。随着4K、8K高清视频的普及,以及虚拟现实(VR)和增强现实(AR)技术的发展,影视文件的数据量正以前所未有的速度增长。这就要求行业内的参与者必须拥有高效的大数据传输解决…

【AI】探索自然语言处理(NLP):从基础到前沿技术及代码实践

Hi ! 云边有个稻草人-CSDN博客 必须有为成功付出代价的决心,然后想办法付出这个代价。 目录 引言 1. 什么是自然语言处理(NLP)? 2. NLP的基础技术 2.1 词袋模型(Bag-of-Words,BoW&#xff…

HTMLCSS :下雪了

这段代码创建了一个动态的雪花飘落加载动画,通过 CSS 技术实现了雪花的下落和消失效果,为页面添加了视觉吸引力和动态感。 大家复制代码时,可能会因格式转换出现错乱,导致样式失效。建议先少量复制代码进行测试,若未能…

Android 音视频编解码 -- MediaCodec

引言 如果我们只是简单玩一下音频、视频播放,那么使用 MediaPlayer SurfaceView 播放就可以了,但如果想加个水印,加点其他特效什么的,那就不行了; 学习 Android 自带的硬件码类 – MediaCodec。 MediaCodec 介绍 在A…

一文了解阿里的 Qwen2.5 模型

最近被DeepSeek刷屏了,但是在之外阿里在2025年1月28日推出了Qwen 2.5 Max模型。 Qwen2.5-Max 的特点:大规模的 MoE 模型,预训练于超 20 万亿 tokens,并经过 SFT 和 RLHF 后训练。 性能表现:在多个基准测试中与领先模型…

DeepSeek R1 linux云部署

云平台:AutoDL 模型加载工具:Ollama 参考:https://github.com/ollama/ollama/blob/main/docs/linux.md 下载Ollama 服务器上下载ollama比较慢,因此我使用浏览器先下载到本地电脑上。 https://ollama.com/download/ollama-linux…

FlashAttention v1 论文解读

论文标题:FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness 论文地址:https://arxiv.org/pdf/2205.14135 FlashAttention 是一种重新排序注意力计算的算法,它无需任何近似即可加速注意力计算并减少内存占用。…

Vue - shallowRef 和 shallowReactive

一、shallowRef 和 shallowReactive (一)shallowRef 在 Vue 3 中,shallowRef 是一个用于创建响应式引用的 API,它与 ref 相似,但它只会使引用的基本类型(如对象、数组等)表现为响应式&#xf…

【深度学习】softmax回归的简洁实现

softmax回归的简洁实现 我们发现(通过深度学习框架的高级API能够使实现)(softmax)线性(回归变得更加容易)。 同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。 本节继续使用Fashion-MNIST数据集,并保持批量大小为256。 import torch …