【零拷贝】

目录

一:了解IO基础概念

二:数据流动的层次结构

三:零拷贝

1.传统IO文件读写

2.mmap 零拷贝技术

3.sendFile 零拷贝技术


一:了解IO基础概念

理解CPU拷贝和DMA拷贝

​         我们知道,操作系统对于内存空间,是分为用户态和内核态的。用户态的应用程序无法直接操作硬件,需要通过内核空间进行操作转换,才能真正操作硬件。这其实是为了保护操作系统的安全。正因为如此,应用程序需要与网卡、磁盘等硬件进行数据交互时,就需要在用户态和内核态之间来回的复制数据。而这些操作,原本都是需要由CPU来进行任务的分配、调度等管理步骤的,早先这些IO接口都是由CPU独立负责,所以当发生大规模的数据读写操作时,CPU的占用率会非常高。

之后,操作系统为了避免CPU完全被各种IO调用给占用,引入了DMA(直接存储器存储)。由DMA来负责这些频繁的IO操作。DMA是一套独立的指令集,不会占用CPU的计算资源。这样,CPU就不需要参与具体的数据复制的工作,只需要管理DMA的权限即可。

​ DMA拷贝极大的释放了CPU的性能,因此他的拷贝速度会比CPU拷贝要快很多。但是,其实DMA拷贝本身,也在不断优化。

​ 引入DMA拷贝之后,在读写请求的过程中,CPU不再需要参与具体的工作,DMA可以独立完成数据在系统内部的复制。但是,数据复制过程中,依然需要借助数据总进线。当系统内的IO操作过多时,还是会占用过多的数据总线,造成总线冲突,最终还是会影响数据读写性能。

​ 为了避免DMA总线冲突对性能的影响,后来又引入了Channel通道的方式。Channel,是一个完全独立的处理器,专门负责IO操作。既然是处理器,Channel就有自己的IO指令,与CPU无关,他也更适合大型的IO操作,性能更高。

​ 这也解释了,为什么Java应用层与零拷贝相关的操作都是通过Channel的子类实现的。这其实是借鉴了操作系统中的概念。

channel知识点:

在计算机系统中,“通道”(Channel) 的具体作用范围取决于上下文(如硬件架构、操作系统或编程框架)。以下是不同场景下的解释:


通道是 数据传输的路径或抽象机制,通常不直接等同于“操作系统内存 ↔ 外设”的物理传输,而是分层协作中的一环。

(1) 硬件层的通道(如传统大型机)

  • 功能
    某些系统(如 IBM 大型机)的 I/O 通道 是专用硬件,直接管理外设(磁盘、磁带)与内存的传输。

  • 特点

    • 通道是独立于 CPU 的处理器,可执行复杂的 I/O 指令(如协议解析、数据分块)。

    • 直接与外设控制器交互,完成物理数据传输(类似增强版 DMA)。

  • 示例
    大型机中,通道从磁盘读取数据到内存,无需 CPU 干预。

(2) 操作系统层的通道(如设备驱动)

  • 功能
    操作系统通过 设备驱动内核 I/O 子系统 管理外设与内存的交互。

  • 特点

    • 通道在此上下文中更接近 逻辑抽象(如 /dev 下的设备文件)。

    • 实际数据传输依赖 DMAPIO(编程 I/O)

(3) 编程框架中的通道(如 Java NIO)

  • 功能
    Java NIO 的 Channel(如 FileChannelSocketChannel)是 用户空间与内核空间之间的桥梁

  • 特点

    • 通过系统调用与内核交互,数据在用户缓冲区(如 ByteBuffer)和内核的 Page Cache 之间传输。

    • 不直接操作外设,物理传输由操作系统和 DMA 完成。

二:数据流动的层次结构

计算机系统中,数据从程序到磁盘(或反向)的流动通常经过以下层级:

程序中的 IO 流 → 用户空间缓冲区 → 操作系统缓存页(内核空间) → 磁盘驱动 → 物理磁盘

示意图

程序代码               用户空间              内核空间              硬件层
┌───────────┐       ┌─────────────┐      ┌──────────────┐      ┌────────┐
│  IO 流    │ → → → │ 用户缓冲区   │ → → → │ Page Cache    │ → → → │ 磁盘   │
└───────────┘       └─────────────┘      └──────────────┘      └────────┘
                        (程序层)             (操作系统层)        (物理层)

 而零拷贝技术是减少用户空间和内存空间之间数据传输的次数,接下来,将进入零拷贝的讲解。

三:零拷贝

        零拷贝(Zero-copy) 是一种优化技术,旨在 减少或消除数据在内存中的冗余复制操作,从而提升 I/O 性能。它主要作用于 用户空间内存与内核空间内存之间的数据传输,但最终目标是减少整个数据链路(从磁盘到网络、或内存到外设)中的复制次数。

        对于Java应用层来说,零拷贝有mmap和sendFile两种方式。

1.传统IO文件读写

        说零拷贝技术之前,要先了解传统的IO文件读写是怎么样的,才能更好的理解零拷贝技术,下面先说传统IO的读写工作流程。

传统IO文件读写

      传统IO文件读写如下图1-1所示:

                                                图1-1 传统IO文件读写流程图

传统IO文件读写工作流程:

整体流程

Java 程序 → 用户空间 → 内核空间(Page Cache) → 磁盘
          (修改数据) ↑↓(读写)       (DMA 传输)

流程分三个阶段:读取数据修改数据写回数

详细步骤与层级交互

(1) 打开文件

  • Java 代码:使用 FileInputStreamFileChannelRandomAccessFile 打开文件。

  • 系统调用open(),触发内核创建文件描述符,建立程序与文件的连接。

(2) 读取数据(磁盘 → 内核空间 → 用户空间)

  1. 磁盘到内核空间(Page Cache)

    • DMA 传输:磁盘控制器通过 DMA(直接内存访问) 将文件数据直接读取到内核的 Page Cache,无需 CPU 参与。

    • 触发方式:Java 调用 FileChannel.read(ByteBuffer)InputStream.read(),底层触发 read() 系统调用。

  2. 内核空间到用户空间

    • 数据拷贝:内核将 Page Cache 中的数据复制到用户空间的缓冲区(如 byte[]ByteBuffer)。

    • 性能开销:此拷贝由 CPU 完成,是小文件读取的主要性能瓶颈。

(3) 修改数据(用户空间内操作)

  • Java 操作:在用户空间的缓冲区中修改数据(如字符串替换、字节操作)。

  • 示例

    String content = new String(buffer.array(), StandardCharsets.UTF_8);
    String modifiedContent = content.replace("old", "new");
    byte[] newData = modifiedContent.getBytes(StandardCharsets.UTF_8);

(4) 写回数据(用户空间 → 内核空间 → 磁盘)

  1. 用户空间到内核空间(Page Cache)

    • 数据拷贝:用户空间的修改后数据通过 FileChannel.write(ByteBuffer)OutputStream.write() 触发 write() 系统调用,将数据复制到内核的 Page Cache。

    • 延迟写入:数据暂存于 Page Cache,不会立即写入磁盘。

  2. 内核空间到磁盘

    • DMA 传输:操作系统通过 DMA 将 Page Cache 中的数据异步写入磁盘。

    • 刷盘时机

      • 定时刷盘:由内核线程(如 pdflush)定期将脏页(修改过的数据)写入磁盘。

      • 强制刷盘:调用 FileChannel.force(true) 触发 fsync() 系统调用,确保数据持久化。

(5) 关闭文件

  • Java 代码:调用 close() 释放文件描述符。

  • 系统调用close(),释放内核资源。

2.mmap 零拷贝技术

  mmap 零拷贝技术 的核心是通过内存映射文件(Memory-Mapped File)将文件内容直接映射到用户空间的虚拟内存,从而避免传统 I/O 中用户空间与内核空间之间的数据拷贝。

mmap零拷贝技术IO读写

       IO文mmap零拷贝技术文件读写如下图1-2所示:

                                        图2-1 mmap零拷贝技术文件读写流程图

mmap零拷贝IO文件读写工作流程:

工作流程概述

磁盘 → Page Cache →(内存映射)→ 用户空间虚拟内存 →(修改数据)→ Page Cache → 磁盘

 详细步骤

1. 打开文件并创建内存映射

  • 用户空间
    使用 FileChannel.map() 将文件映射到用户空间的虚拟内存。

  • 内核空间
    内核将文件的磁盘块映射到 Page Cache,并建立用户空间虚拟内存与 Page Cache 的映射关系。

  • 代码示例

    FileChannel channel = FileChannel.open(Paths.get("file.txt"), StandardOpenOption.READ, StandardOpenOption.WRITE);
    MappedByteBuffer buffer = channel.map(FileChannel.MapMode.READ_WRITE, 0, channel.size());

2. 读取数据

  • 用户空间
    用户程序直接通过 MappedByteBuffer 访问数据,无需显式调用 read()

  • 内核空间
    若数据未加载到 Page Cache,触发缺页中断,内核从磁盘读取数据到 Page Cache。

  • 零拷贝
    数据直接从 Page Cache 映射到用户空间,无需复制到用户缓冲区。

3. 修改数据

  • 用户空间
    用户程序直接修改 MappedByteBuffer 中的数据。

  • 内核空间
    修改后的数据标记为 脏页(Dirty Page),暂存于 Page Cache。

4. 写回磁盘

  • 用户空间
    调用 buffer.force() 强制将脏页刷回磁盘。

  • 内核空间
    内核将脏页从 Page Cache 写回磁盘的对应位置。

  • 代码示例

    buffer.force(); // 强制刷盘

5. 关闭映射

  • 用户空间
    关闭 FileChannel,释放映射的内存区域。

  • 内核空间
    解除内存映射,释放相关资源。

  • 代码示例

    channel.close();

3.sendFile 零拷贝技术

        早期的sendFile其实和mmap一样,实现机制还是依靠CPU进行页缓存与socket缓存区之间的数据拷贝,如图3-1所示。

                                 图3-1 早期的sendFile 读写流程图

         从Linux内核2.6.33版本开始,引入了对 Scatter-Gather DMA(分散-聚集 DMA) 的支持,优化了实现机制,在拷贝过程中,并不直接拷贝文件的内容,而是只拷贝一个带有文件位置和长度等信息的文件描述符FD,这样子就大大减少了需要传递的数据。而真实的数据内容,会交由DMA控制器,从页缓存中打包异步发送到socket中。如图3-2所示。

                                       图3-2 Linux内核2.6.33 版本 sendFile 读写流程图

注意: sendfile 系统调用 的主要设计目标是 将文件数据高效地发送到网络套接字,因此它 不支持将用户空间的数据直接写入磁盘

工作流程概述

磁盘 → Page Cache →(sendfile)→ 网卡

详细步骤

1. 打开文件

  • 用户空间
    使用 FileChannel 打开文件。

  • 内核空间
    内核将文件的磁盘块映射到 Page Cache

  • 代码示例

    FileChannel fileChannel = new FileInputStream("file.txt").getChannel();

2. 打开网络套接字

  • 用户空间
    使用 SocketChannel 打开网络连接。

  • 内核空间
    内核创建 Socket Buffer,用于管理网络数据。

  • 代码示例

    SocketChannel socketChannel = SocketChannel.open(new InetSocketAddress("host", 8080));

3. 使用 sendfile 发送数据

  • 用户空间
    调用 FileChannel.transferTo(),底层使用 sendfile 系统调用。

  • 内核空间
    数据直接从 Page Cache 通过 DMA 发送到网卡,绕过用户空间。

  • 代码示例

    fileChannel.transferTo(0, fileChannel.size(), socketChannel); // 零拷贝发送

4. 关闭资源

  • 用户空间
    关闭 FileChannelSocketChannel,释放资源。

  • 内核空间
    释放 Page Cache 和 Socket Buffer 资源。

  • 代码示例

    fileChannel.close();
    socketChannel.close();

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/962769.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据分析系列--⑨RapidMiner训练集、测试集、验证集划分

一、数据集获取 二、划分数据集 1.导入和加载数据 2.数据集划分 2.1 划分说明 2.2 方法一 2.3 方法二 一、数据集获取 点击下载数据集 此数据集包含538312条数据. 二、划分数据集 1.导入和加载数据 2.数据集划分 2.1 划分说明 2.2 方法一 使用Filter Example Range算子. …

vsnprintf() 将可变参数格式化输出到字符数组

vsnprintf{} 将可变参数格式化输出到一个字符数组 1. function vsnprintf()1.1. const int num_bytes vsnprintf(NULL, 0, format, arg); 2. Parameters3. Return value4. Example5. llama.cppReferences 1. function vsnprintf() https://cplusplus.com/reference/cstdio/vs…

Jenkins未在第一次登录后设置用户名,第二次登录不进去怎么办?

Jenkins在第一次进行登录的时候,只需要输入Jenkins\secrets\initialAdminPassword中的密码,登录成功后,本次我们没有修改密码,就会导致后面第二次登录,Jenkins需要进行用户名和密码的验证,但是我们根本就没…

【Arxiv 大模型最新进展】TOOLGEN:探索Agent工具调用新范式

【Arxiv 大模型最新进展】TOOLGEN:探索Agent工具调用新范式 文章目录 【Arxiv 大模型最新进展】TOOLGEN:探索Agent工具调用新范式研究框图方法详解 作者:Renxi Wang, Xudong Han 等 单位:LibrAI, Mohamed bin Zayed University o…

数据库内存与Buffer Pool

数据库内存与Buffer Pool 文章目录 数据库内存与Buffer Pool一:MySQL内存结构1:MySQL工作组件2:工作线程的本地内存3:共享内存区域4:存储引擎缓冲区 二:InnoDB的核心:Buffer Pool1:数…

[CVPR 2022]Cross-view Transformers for real-time Map-view Semantic Segmentation

论文网址:Cross-View Transformers for Real-Time Map-View Semantic Segmentation 论文代码:cross_view_transformers/cross_view_transformer at master bradyz/cross_view_transformers GitHub 英文是纯手打的!论文原文的summarizing …

Java 中线程的使用

文章目录 Java 线程1 进程2 线程3 线程的基本使用(1)继承 Thread 类,重写 run 方法(2)实现 Runnable 接口,重写 run 方法(3)多线程的使用(4)线程的理解&#…

手撕Vision Transformer -- Day1 -- 基础原理

手撕Vision Transformer – Day1 – 基础原理 目录 手撕Vision Transformer -- Day1 -- 基础原理Vision Transformer (ViT) 模型原理1. Vit 网络结构图2. 背景3. 模型架构3.1 图像切块(Patch Embedding)3.2 添加位置编码(Positional Encoding…

【AI】DeepSeek 概念/影响/使用/部署

在大年三十那天,不知道你是否留意到,“deepseek”这个词出现在了各大热搜榜单上。这引起了我的关注,出于学习的兴趣,我深入研究了一番,才有了这篇文章的诞生。 概念 那么,什么是DeepSeek?首先百…

Java锁自定义实现到aqs的理解

专栏系列文章地址:https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标: 理解锁,能自定义实现锁通过自定义锁的实现复习Thread和Object的相关方法开始尝试理解Aqs, 这样后续基于Aqs的的各种实现将能更好的理解 目录 锁的…

html的字符实体和颜色表示

在HTML中,颜色可以通过以下几种方式表示,以下是具体的示例: 1. 十六进制颜色代码 十六进制颜色代码以#开头,后面跟随6个字符,每两个字符分别表示红色、绿色和蓝色的强度。例如: • #FF0000:纯红…

Golang 并发机制-1:Golang并发特性概述

并发是现代软件开发中的一个基本概念,它使程序能够同时执行多个任务,从而提高效率和响应能力。在本文中,我们将探讨并发性在现代软件开发中的重要性,并深入研究Go处理并发任务的独特方法。 并发的重要性 增强性能 并发在提高软…

three.js用粒子使用canvas生成的中文字符位图材质

three.js用粒子使用canvas生成中文字符材质 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Three.…

《逆向工程核心原理》第三~五章知识整理

查看上一章节内容《逆向工程核心原理》第一~二章知识整理 对应《逆向工程核心原理》第三章到第五章内容 小端序标记法 字节序 多字节数据在计算机内存中存放的字节顺序分为小端序和大端序两大类 大端序与小端序 BYTE b 0x12; WORD w 0x1234; DWORD dw 0x12345678; cha…

2025年数学建模美赛 A题分析(4)楼梯使用人数模型

2025年数学建模美赛 A题分析&#xff08;1&#xff09;Testing Time: The Constant Wear On Stairs 2025年数学建模美赛 A题分析&#xff08;2&#xff09;楼梯磨损分析模型 2025年数学建模美赛 A题分析&#xff08;3&#xff09;楼梯使用方向偏好模型 2025年数学建模美赛 A题分…

【cocos creator】【模拟经营】餐厅经营demo

下载&#xff1a;【cocos creator】模拟经营餐厅经营

29.Word:公司本财年的年度报告【13】

目录 NO1.2.3.4 NO5.6.7​ NO8.9.10​ NO1.2.3.4 另存为F12&#xff1a;考生文件夹&#xff1a;Word.docx选中绿色标记的标题文本→样式对话框→单击右键→点击样式对话框→单击右键→修改→所有脚本→颜色/字体/名称→边框&#xff1a;0.5磅、黑色、单线条&#xff1a;点…

高性能消息队列Disruptor

定义一个事件模型 之后创建一个java类来使用这个数据模型。 /* <h1>事件模型工程类&#xff0c;用于生产事件消息</h1> */ no usages public class EventMessageFactory implements EventFactory<EventMessage> { Overridepublic EventMessage newInstance(…

neo4j初识

文章目录 一 图论基础二 柯尼斯堡七桥问题2.1 问题背景2.2 欧拉的解决3.1 核心概念3.2 核心优势3.3 应用场景3.4 技术特性3.5 版本与部署3.6 示例&#xff1a;社交关系查询3.7 限制与考量 四 图论与 Neo4j 的关联4.1 数据建模4.2 高效遍历4.3 应用场景 五 示例&#xff1a;用 N…

吴恩达深度学习——超参数调试

内容来自https://www.bilibili.com/video/BV1FT4y1E74V&#xff0c;仅为本人学习所用。 文章目录 超参数调试调试选择范围 Batch归一化公式整合 Softmax 超参数调试 调试 目前学习的一些超参数有学习率 α \alpha α&#xff08;最重要&#xff09;、动量梯度下降法 β \bet…