吴恩达深度学习——超参数调试

内容来自https://www.bilibili.com/video/BV1FT4y1E74V,仅为本人学习所用。

文章目录

  • 超参数调试
    • 调试
    • 选择范围
  • Batch归一化
    • 公式
    • 整合
  • Softmax

超参数调试

调试

目前学习的一些超参数有学习率 α \alpha α(最重要)、动量梯度下降法 β \beta β(次重要)、Adam优化算法 β 1 \beta_1 β1 β 2 \beta_2 β2 ϵ \epsilon ϵ(这三个参数一般默认)、层数layers(次次重要)、不同层中的隐藏单元数量hidden units(次重要)、学习率衰减learning rate decay(次次重要)、小批量大小mini-batch size(次重要)。在这里插入图片描述

对于超参数的取值,如果有两个超参数,可以画一个网格,然后随机取值;如果有三个超参数,画一个立方体随机取值。

另外,可以从粗到细取值。在某个范围内取的超参数明显比周围的效果要好,那么可以在这个范围内细分取值。

在这里插入图片描述
在这里插入图片描述

选择范围

在这里插入图片描述

假设学习率在0.0001~1之间,那么不应该随机均匀取值,否则大部分数据落在0.1~1上,因此,使用对数标尺搜索超参数。 0.0001 = 1 0 − 4 , 1 = 1 0 0 , r ∈ [ − 4 , 0 ] 0.0001=10^{-4},1=10^0,r\in[-4,0] 0.0001=104,1=100,r[4,0]。在 r r r的范围内随机取值,然后使用对数重新映射到对数标尺上。

Batch归一化

在这里插入图片描述
对于单层神经网络,对参数 x x x归一化,可以方便算法优化。
在这里插入图片描述
对于多层神经网络比如 w [ 3 ] w^{[3]} w[3],是否可以对参数 a [ 2 ] a^{[2]} a[2]归一化? a [ 2 ] a^{[2]} a[2]来自于 z [ 2 ] z^{[2]} z[2],所以对 z [ 2 ] z^{[2]} z[2]进行归一化,称为Batch归一化。

公式

  1. 计算均值:对于给定的mini - batch数据(以神经网络某层输入 z ( 1 ) , z ( 2 ) , ⋯   , z ( m ) z^{(1)}, z^{(2)}, \cdots, z^{(m)} z(1),z(2),,z(m)为例, m m m是mini - batch大小),计算其均值 μ \mu μ μ = 1 m ∑ i = 1 m z ( i ) \mu=\frac{1}{m}\sum_{i = 1}^{m}z^{(i)} μ=m1i=1mz(i)
  2. 计算方差:计算mini - batch数据的方差 σ 2 \sigma^2 σ2 σ 2 = 1 m ∑ i = 1 m ( z ( i ) − μ ) 2 \sigma^2=\frac{1}{m}\sum_{i = 1}^{m}(z^{(i)} - \mu)^2 σ2=m1i=1m(z(i)μ)2
  3. 归一化:对每个数据点 z ( i ) z^{(i)} z(i)进行归一化,得到 z n o r m ( i ) = z ( i ) − μ σ 2 + ϵ z_{norm}^{(i)}=\frac{z^{(i)} - \mu}{\sqrt{\sigma^2+\epsilon}} znorm(i)=σ2+ϵ z(i)μ,其中 ϵ \epsilon ϵ是一个很小的正数(如 1 0 − 8 10^{-8} 108),防止分母为零。
  4. 尺度变换和偏移:引入可学习参数 γ \gamma γ(尺度参数)和 β \beta β(偏移参数),对归一化后的数据进行变换: z ^ ( i ) = γ z n o r m ( i ) + β \hat{z}^{(i)}=\gamma z_{norm}^{(i)}+\beta z^(i)=γznorm(i)+β
    如果 γ = σ 2 + ϵ , β = μ \gamma=\sqrt{\sigma^2+\epsilon},\beta=\mu γ=σ2+ϵ β=μ,有 z ^ ( i ) \hat{z}^{(i)} z^(i)= z ( i ) z^{(i)} z(i) γ 、 β \gamma、\beta γβ是新引入的超参数。

整合

在这里插入图片描述

输入层有 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3三个输入特征,经过两层隐藏层,每层有两个神经元,最终输出 y ^ \hat{y} y^。神经元中 z [ l ] z^{[l]} z[l]表示第 l l l层的线性输出, a [ l ] a^{[l]} a[l]表示第 l l l层的激活输出。

在每一层的线性输出 z [ l ] z^{[l]} z[l]之后进行Batch归一化(BN)操作,引入可学习参数 β [ l ] \beta^{[l]} β[l] γ [ l ] \gamma^{[l]} γ[l],归一化后再经过激活函数得到 a [ l ] a^{[l]} a[l]。图中红色波浪线部分表示Batch归一化的处理位置。

在神经网络中,某层的线性输出原本为 z = W x + b z = Wx + b z=Wx+b 。当进行Batch归一化时,由于后续的 β \beta β(偏移参数)也起到了类似 b b b的添加偏移量的作用,所以从效果上看, b b b的作用被 β \beta β替代了。也就是说, b b b对输入数据所做的添加偏移量的操作,在Batch归一化后的 β \beta β操作中可以等效实现,因此在实际计算中可以将 b b b消去,简化计算过程。

在实际应用中,由于样本是mini-Batch,因此,归一化时可以使用指数加权平均来计算 μ \mu μ σ 2 \sigma^2 σ2

Softmax

之前的分类采用二分分类,这种分类只有0和1两种标记。如果我们需要更多的标记,可以使用Softmax回归来识别多种分类中的一个。

在这里插入图片描述

对于识别猫、狗、小鸡以及其他类别,总共有 C = 4 C = 4 C=4个类别,分别用0(其他)、1(猫)、2(狗)、3(小鸡)表示。下方的神经网络架构,输入 X X X经过多个隐藏层,最终输出层有 n [ L ] = 4 n^{[L]} = 4 n[L]=4个神经元,分别对应输入图像属于“其他”“猫”“狗”“小鸡”这四类的概率 P ( o t h e r ∣ x ) P(other|x) P(otherx) P ( c a t ∣ x ) P(cat|x) P(catx) P ( d o g ∣ x ) P(dog|x) P(dogx) P ( b c l ∣ x ) P(bcl|x) P(bclx),输出 y ^ \hat{y} y^代表预测的类别。

对于 z [ l ] = W [ l ] a [ l − 1 ] + b [ l ] z^{[l]} = W^{[l]}a^{[l - 1]}+b^{[l]} z[l]=W[l]a[l1]+b[l] ,使用Softmax作为激活函数。先对 z [ l ] z^{[l]} z[l]进行指数运算得到 t = e z [ l ] t = e^{z^{[l]}} t=ez[l] ,然后通过Softmax公式计算激活输出 a [ l ] a^{[l]} a[l] a [ l ] = e z [ l ] ∑ j = 1 4 t i a^{[l]}=\frac{e^{z^{[l]}}}{\sum_{j = 1}^{4}t_{i}} a[l]=j=14tiez[l] ,其元素 a i [ l ] = t i ∑ j = 1 4 t i a_{i}^{[l]}=\frac{t_{i}}{\sum_{j = 1}^{4}t_{i}} ai[l]=j=14titi ,将线性输出转换为概率分布。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/962739.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

行业规范要当作业务实体画出来吗

第五元素 总觉得这些没有逻辑的实体,在绘制的时候不应该绘出来,他们没有责任啊。 比如以下:查阅规范 感觉不太对 UMLChina潘加宇 你这个规范是一个电脑系统还是一本书 第五元素 是书 UMLChina潘加宇 书没有智能,唯一暴露的接口是“翻”…

冯·诺依曼体系结构

目录 冯诺依曼体系结构推导 内存提高冯诺依曼体系结构效率的方法 你使用QQ和朋友聊天时,整个数据流是怎么流动的(不考虑网络情况) 与冯诺依曼体系结构相关的一些知识 冯诺依曼体系结构推导 计算机的存在就是为了解决问题,而解…

Qt之数据库操作三

主要介绍qt框架中对数据库的增加&#xff0c;删除和修改功能。 软件界面如下 程序结构 tdialogdata.h中代码 #ifndef TDIALOGDATA_H #define TDIALOGDATA_H#include <QDialog> #include<QSqlRecord> namespace Ui { class TDialogData; }class TDialogData : pub…

8.攻防世界Web_php_wrong_nginx_config

进入题目页面如下 尝试弱口令密码登录 一直显示网站建设中&#xff0c;尝试无果&#xff0c;查看源码也没有什么特别漏洞存在 用Kali中的dirsearch扫描根目录试试 命令&#xff1a; dirsearch -u http://61.147.171.105:53736/ -e* 登录文件便是刚才登录的界面打开robots.txt…

算法基础学习——快排与归并(附带java模版)

快速排序和归并排序是两种速度较快的排序方式&#xff0c;是最应该掌握的两种排序算法&#xff0c; &#xff08;一&#xff09;快速排序&#xff08;不稳定的&#xff09; 基本思想&#xff1a;分治 平均时间复杂度&#xff1a;O(nlogn) / 最慢O(n^2) / 最快O(n) 步骤&…

51单片机开发——I2C通信接口

I2C是微电子通信控制领域广泛采用的一种总线标准。 起始和停止信号&#xff1a; void iic_start(void) {IIC_SDA1;//如果把该条语句放在SCL后面&#xff0c;第二次读写会出现问题delay_10us(1);IIC_SCL1;delay_10us(1);IIC_SDA0; //当SCL为高电平时&#xff0c;SDA由高变为低d…

力扣017_最小覆盖字串题解----C++

题目描述 我们可以用滑动窗口的思想解决这个问题。在滑动窗口类型的问题中都会有两个指针&#xff0c;一个用于「延伸」现有窗口的 r 指针&#xff0c;和一个用于「收缩」窗口的 l 指针。在任意时刻&#xff0c;只有一个指针运动&#xff0c;而另一个保持静止。我们在 s 上滑动…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.16 内存黑科技:缓冲区协议的底层突破

1.16 内存黑科技&#xff1a;缓冲区协议的底层突破 目录 #mermaid-svg-RmGabswVIrCh5olE {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-RmGabswVIrCh5olE .error-icon{fill:#552222;}#mermaid-svg-RmGabswVIrCh5o…

MySQL数据库(二)- SQL

目录 ​编辑 一 DDL (一 数据库操作 1 查询-数据库&#xff08;所有/当前&#xff09; 2 创建-数据库 3 删除-数据库 4 使用-数据库 (二 表操作 1 创建-表结构 2 查询-所有表结构名称 3 查询-表结构内容 4 查询-建表语句 5 添加-字段名数据类型 6 修改-字段数据类…

jstat命令详解

jstat 用于监视虚拟机运行时状态信息的命令&#xff0c;它可以显示出虚拟机进程中的类装载、内存、垃圾收集、JIT 编译等运行数据。 命令的使用格式如下。 jstat [option] LVMID [interval] [count]各个参数详解&#xff1a; option&#xff1a;操作参数LVMID&#xff1a;本…

亚博microros小车-原生ubuntu支持系列:18 Cartographer建图

Cartographer简介 Cartographer是Google开源的一个ROS系统支持的2D和3D SLAM&#xff08;simultaneous localization and mapping&#xff09;库。基于图优化&#xff08;多线程后端优化、cere构建的problem优化&#xff09;的方法建图算法。可以结合来自多个传感器&#xff0…

SpringBoot或SpringAI对接DeekSeek大模型

今日除夕夜&#xff0c;deepseek可是出尽了风头&#xff0c;但是我看网上还没有这方面的内容对接&#xff0c;官网也并没有&#xff0c;故而本次对接是为了完成这个空缺 我看很多的博客内容是流式请求虽然返回时正常的&#xff0c;但是他并不是实时返回&#xff0c;而是全部响应…

嵌入式C语言:什么是共用体?

在嵌入式C语言编程中&#xff0c;共用体&#xff08;Union&#xff09;是一种特殊的数据结构&#xff0c;它允许在相同的内存位置存储不同类型的数据。意味着共用体中的所有成员共享同一块内存区域&#xff0c;因此&#xff0c;在任何给定时间&#xff0c;共用体只能有效地存储…

Unet 改进:在encoder和decoder间加入TransformerBlock

目录 1. TransformerBlock 2. Unet 改进 3. 完整代码 Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可 1. TransformerBlock TransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务…

音标-- 01--音标

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 国际音标1.元音音标单元音双元音常见单词 2.辅音音标清辅音&#xff0c;浊辅音清辅音&#xff08;不振动&#xff09;和 浊辅音&#xff08;振动&#xff09;是成对…

使用Pygame制作“打砖块”游戏

1. 前言 打砖块&#xff08;Breakout / Arkanoid&#xff09; 是一款经典街机游戏&#xff0c;玩家控制一个可左右移动的挡板&#xff0c;接住并反弹球&#xff0c;击碎屏幕上方的砖块。随着砖块被击碎&#xff0c;不仅能获得分数&#xff0c;还可以体验到不断加速或复杂的反弹…

【AI绘画】MidJourney关键词{Prompt}全面整理

AI绘画整理&#xff0c;MidJourney关键词。喜欢AI绘画的朋友必备&#xff0c;建议收藏&#xff0c;后面用到时供查阅使用。 1、光线与影子篇 中 英 闪耀的霓虹灯 shimmeringneon lights 黑暗中的影子 shadows in the dark 照亮城市的月光 moonlightilluminatingthe cit…

嵌入式系统|DMA和SPI

文章目录 DMA&#xff08;直接内存访问&#xff09;DMA底层原理1. 关键组件2. 工作机制3. DMA传输模式 SPI&#xff08;串行外设接口&#xff09;SPI的基本原理SPI连接示例 DMA与SPI的共同作用 DMA&#xff08;直接内存访问&#xff09; 类型&#xff1a;DMA是一种数据传输接口…

AVL树介绍

一、介绍 高度平衡的搜索二叉树&#xff0c;保证每个节点的左右子树高度差不超过1&#xff0c;降低搜索树的高度以提高搜索效率。 通过平衡因子和旋转来保证左右子树高度差不超过1 二、插入节点 1、插入规则 &#xff08;1&#xff09;搜按索树规则插入节点 &#xff08;…

win11 sourcetree安装问题

win11 sourcetree安装出现msys-2.0.dll 问题&#xff0c;需要从win10的以下路径复制出 msys-2.0.dll来加入到win11中 C:\Users\kz121468\AppData\Local\Atlassian\SourceTree\git_local\usr\bin\ 复制到 win11的 C:\Users\kz121468\AppData\Local\Atlassian\SourceTree\git_lo…