11 Spark面试真题

11 Spark大厂面试真题

  • 1. 通常来说,Spark与MapReduce相比,Spark运行效率更高。请说明效率更高来源于Spark内置的哪些机制?
  • 2. hadoop和spark使用场景?
  • 3. spark如何保证宕机迅速恢复?
  • 4. hadoop和spark的相同点和不同点?
  • 5. RDD持久化原理?
  • 6. checkpoint检查点机制?
  • 7. checkpoint和持久化机制的区别?
  • 8. RDD机制理解吗?
  • 9. Spark streaming以及基本工作原理?
  • 10. DStream以及基本工作原理?
  • 11. spark有哪些组件?
  • 12. spark工作机制?
  • 13. 说下宽依赖和窄依赖
  • 14. Spark主备切换机制原理知道吗?
  • 15. spark解决了hadoop的哪些问题?
  • 16. 数据倾斜的产生和解决办法?
  • 17. 你用sparksql处理的时候, 处理过程中用的dataframe还是直接写的sql?为什么?
  • 18. RDD中reduceBykey与groupByKey哪个性能好,为什么
  • 19. Spark master HA主从切换过程不会影响到集群已有作业的运行,为什么
  • 20. spark master使用zookeeper进行ha,有哪些源数据保存到Zookeeper里面

1. 通常来说,Spark与MapReduce相比,Spark运行效率更高。请说明效率更高来源于Spark内置的哪些机制?

spark是借鉴了Mapreduce,并在其基础上发展起来的,继承了其分布式计算的优点并进行了改进,spark生态更为丰富,功能更为强大,性能更加适用范围广,mapreduce更简单,稳定性好。主要区别:
1.spark把运算的中间数据(shuffle阶段产生的数据)存放在内存,迭代计算效率更高,mapreduce的中间结果需要落地,保存到磁盘;
2.Spark容错性高,它通过弹性分布式数据集RDD来实现高效容错,RDD是一组分布式的存储在 节点内存中的只读性的数据集,这些集合石弹性的,某一部分丢失或者出错,可以通过整个数据集的计算流程的血缘关系来实现重建,mapreduce的容错只能重新计算;
3.Spark更通用,提供了transformation和action这两大类的多功能api,另外还有流式处理sparkstreaming模块、图计算等等,mapreduce只提供了map和reduce两种操作,流计算及其他的模块支持比较缺乏;
4.Spark框架和生态更为复杂,有RDD,血缘lineage、执行时的有向无环图DAG,stage划分等,很多时候spark作业都需要根据不同业务场景的需要进行调优以达到性能要求,mapreduce框架及其生态相对较为简单,对性能的要求也相对较弱,运行较为稳定,适合长期后台运行;
5.Spark计算框架对内存的利用和运行的并行度比mapreduce高,Spark运行容器为executor,内部ThreadPool中线程运行一个Task,mapreduce在线程内部运行container,container容器分类为MapTask和ReduceTask,Spark程序运行并行度更高;
6.Spark对于executor的优化,在JVM虚拟机的基础上对内存弹性利用:storage memory与Execution memory的弹性扩容,使得内存利用效率更高。

2. hadoop和spark使用场景?

Hadoop/MapReduce和Spark最适合的都是做离线型的数据分析,但Hadoop特别适合是单次分析的数据量“很大”的情景,而Spark则适用于数据量不是很大的情景。
1.一般情况下,对于中小互联网和企业级的大数据应用而言,单次分析的数量都不会“很大”,因此可以优先考虑使用Spark。
2.业务通常认为Spark更适用于机器学习之类的“迭代式”应用,80GB的压缩数据(解压后超过200GB),10个节点的集群规模,跑类似“sum+group-by”的应用,MapReduce花了5分钟,而spark只需要2分钟。

3. spark如何保证宕机迅速恢复?

1.适当增加spark standby master
2.编写shell脚本,定期检测master状态,出现宕机后对master进行重启操作

4. hadoop和spark的相同点和不同点?

Hadoop底层使用MapReduce计算架构,只有map和reduce两种操作,表达能力比较欠缺,而且在MR过程中会重复的读写hdfs,造成大量的磁盘io读写操作,所以适合高时延环境下批处理计算的应用;
Spark是基于内存的分布式计算架构,提供更加丰富的数据集操作类型,主要分成转化操作和行动操作,包括map、reduce、filter、flatmap、groupbykey、reducebykey、union和join等,数据分析更加快速,所以适合低时延环境下计算的应用;
spark与hadoop最大的区别在于迭代式计算模型。基于mapreduce框架的Hadoop主要分为map和reduce两个阶段,两个阶段完了就结束了,所以在一个job里面能做的处理很有限;spark计算模型是基于内存的迭代式计算模型,可以分为n个阶段,根据用户编写的RDD算子和程序,在处理完一个阶段后可以继续往下处理很多个阶段,而不只是两个阶段。所以spark相较于mapreduce,计算模型更加灵活,可以提供更强大的功能。
但是spark也有劣势,由于spark基于内存进行计算,虽然开发容易,但是真正面对大数据的时候,在没有进行调优的情况下,可能会出现各种各样的问题,比如OOM内存溢出等情况,导致spark程序可能无法运行起来,而mapreduce虽然运行缓慢,但是至少可以慢慢运行完。

5. RDD持久化原理?

spark非常重要的一个功能特性就是可以将RDD持久化在内存中。
调用cache()和persist()方法即可。cache()和persist()的区别在于,cache()是persist()的一种简化方式,cache()的底层就是调用persist()的无参版本persist(MEMORY_ONLY),将数据持久化到内存中。
如果需要从内存中清除缓存,可以使用unpersist()方法。RDD持久化是可以手动选择不同的策略的。在调用persist()时传入对应的StorageLevel即可。

6. checkpoint检查点机制?

应用场景:当spark应用程序特别复杂,从初始的RDD开始到最后整个应用程序完成有很多的步骤,而且整个应用运行时间特别长,这种情况下就比较适合使用checkpoint功能。
原因:对于特别复杂的Spark应用,会出现某个反复使用的RDD,即使之前持久化过但由于节点的故障导致数据丢失了,没有容错机制,所以需要重新计算一次数据。
Checkpoint首先会调用SparkContext的setCheckPointDIR()方法,设置一个容错的文件系统的目录,比如说HDFS;然后对RDD调用checkpoint()方法。之后在RDD所处的job运行结束之后,会启动一个单独的job,来将checkpoint过的RDD数据写入之前设置的文件系统,进行高可用、容错的类持久化操作。
检查点机制是我们在spark streaming中用来保障容错性的主要机制,它可以使spark streaming阶段性的把应用数据存储到诸如HDFS等可靠存储系统中,以供恢复时使用。具体来说基于以下两个目的服务:
1.控制发生失败时需要重算的状态数。Spark streaming可以通过转化图的谱系图来重算状态,检查点机制则可以控制需要在转化图中回溯多远。
2.提供驱动器程序容错。如果流计算应用中的驱动器程序崩溃了,你可以重启驱动器程序并让驱动器程序从检查点恢复,这样spark streaming就可以读取之前运行的程序处理数据的进度,并从那里继续。

7. checkpoint和持久化机制的区别?

最主要的区别在于持久化只是将数据保存在BlockManager中,但是RDD的lineage(血缘关系,依赖关系)是不变的。但是checkpoint执行完之后,rdd已经没有之前所谓的依赖rdd了,而只有一个强行为其设置的checkpointRDD,checkpoint之后rdd的lineage就改变了。
持久化的数据丢失的可能性更大,因为节点的故障会导致磁盘、内存的数据丢失。但是checkpoint的数据通常是保存在高可用的文件系统中,比如HDFS中,所以数据丢失可能性比较低

8. RDD机制理解吗?

rdd分布式弹性数据集,简单的理解成一种数据结构,是spark框架上的通用货币。所有算子都是基于rdd来执行的,不同的场景会有不同的rdd实现类,但是都可以进行互相转换。rdd执行过程中会形成dag图,然后形成lineage保证容错性等。从物理的角度来看rdd存储的是block和node之间的映射。
RDD是spark提供的核心抽象,全称为弹性分布式数据集。
RDD在逻辑上是一个hdfs文件,在抽象上是一种元素集合,包含了数据。它是被分区的,分为多个分区,每个分区分布在集群中的不同结点上,从而让RDD中的数据可以被并行操作(分布式数据集)
比如有个RDD有90W数据,3个partition,则每个分区上有30W数据。RDD通常通过Hadoop上的文件,即HDFS或者HIVE表来创建,还可以通过应用程序中的集合来创建;RDD最重要的特性就是容错性,可以自动从节点失败中恢复过来。即如果某个结点上的RDD partition因为节点故障,导致数据丢失,那么RDD可以通过自己的数据来源重新计算该partition。这一切对使用者都是透明的。
RDD的数据默认存放在内存中,但是当内存资源不足时,spark会自动将RDD数据写入磁盘。比如某结点内存只能处理20W数据,那么这20W数据就会放入内存中计算,剩下10W放到磁盘中。RDD的弹性体现在于RDD上自动进行内存和磁盘之间权衡和切换的机制。

9. Spark streaming以及基本工作原理?

Spark streaming是spark core API的一种扩展,可以用于进行大规模、高吞吐量、容错的实时数据流的处理。
它支持从多种数据源读取数据,比如Kafka、Flume、Twitter和TCP Socket,并且能够使用算子比如map、reduce、join和window等来处理数据,处理后的数据可以保存到文件系统、数据库等存储中。
Spark streaming内部的基本工作原理是:接受实时输入数据流,然后将数据拆分成batch,比如每收集一秒的数据封装成一个batch,然后将每个batch交给spark的计算引擎进行处理,最后会生产处一个结果数据流,其中的数据也是一个一个的batch组成的。

10. DStream以及基本工作原理?

DStream是spark streaming提供的一种高级抽象,代表了一个持续不断的数据流。
DStream可以通过输入数据源来创建,比如Kafka、flume等,也可以通过其他DStream的高阶函数来创建,比如map、reduce、join和window等。
DStream内部其实不断产生RDD,每个RDD包含了一个时间段的数据。
Spark streaming一定是有一个输入的DStream接收数据,按照时间划分成一个一个的batch,并转化为一个RDD,RDD的数据是分散在各个子节点的partition中。

11. spark有哪些组件?

1.master:管理集群和节点,不参与计算。
2.worker:计算节点,进程本身不参与计算,和master汇报。
3.Driver:运行程序的main方法,创建spark context对象。
4.spark context:控制整个application的生命周期,包括dagsheduler和task scheduler等组件。
5.client:用户提交程序的入口。

12. spark工作机制?

用户在client端提交作业后,会由Driver运行main方法并创建spark context上下文。执行add算子,形成dag图输入dagscheduler,按照add之间的依赖关系划分stage输入task scheduler。task scheduler会将stage划分为task set分发到各个节点的executor中执行。

13. 说下宽依赖和窄依赖

宽依赖:
本质就是shuffle。父RDD的每一个partition中的数据,都可能会传输一部分到下一个子RDD的每一个partition中,此时会出现父RDD和子RDD的partition之间具有交互错综复杂的关系,这种情况就叫做两个RDD之间是宽依赖。
窄依赖:
父RDD和子RDD的partition之间的对应关系是一对一的。

14. Spark主备切换机制原理知道吗?

Master实际上可以配置两个,Spark原生的standalone模式是支持Master主备切换的。当Active Master节点挂掉以后,我们可以将Standby Master切换为Active Master。
Spark Master主备切换可以基于两种机制,一种是基于文件系统的,一种是基于ZooKeeper的。
基于文件系统的主备切换机制,需要在Active Master挂掉之后手动切换到Standby Master上;
而基于Zookeeper的主备切换机制,可以实现自动切换Master。

15. spark解决了hadoop的哪些问题?

1.MR:抽象层次低,需要使用手工代码来完成程序编写,使用上难以上手;
Spark:Spark采用RDD计算模型,简单容易上手。
2.MR:只提供map和reduce两个操作,表达能力欠缺;
Spark:Spark采用更加丰富的算子模型,包括map、flatmap、groupbykey、reducebykey等;
3.MR:一个job只能包含map和reduce两个阶段,复杂的任务需要包含很多个job,这些job之间的管理以来需要开发者自己进行管理;
Spark:Spark中一个job可以包含多个转换操作,在调度时可以生成多个stage,而且如果多个map操作的分区不变,是可以放在同一个task里面去执行;
4.MR:中间结果存放在hdfs中;
Spark:Spark的中间结果一般存在内存中,只有当内存不够了,才会存入本地磁盘,而不是hdfs;
5.MR:只有等到所有的map task执行完毕后才能执行reduce task;
Spark:Spark中分区相同的转换构成流水线在一个task中执行,分区不同的需要进行shuffle操作,被划分成不同的stage需要等待前面的stage执行完才能执行。
6.MR:只适合batch批处理,时延高,对于交互式处理和实时处理支持不够;
Spark:Spark streaming可以将流拆成时间间隔的batch进行处理,实时计算。

16. 数据倾斜的产生和解决办法?

数据倾斜以为着某一个或者某几个partition的数据特别大,导致这几个partition上的计算需要耗费相当长的时间。
在spark中同一个应用程序划分成多个stage,这些stage之间是串行执行的,而一个stage里面的多个task是可以并行执行,task数目由partition数目决定,如果一个partition的数目特别大,那么导致这个task执行时间很长,导致接下来的stage无法执行,从而导致整个job执行变慢。
避免数据倾斜,一般是要选用合适的key,或者自己定义相关的partitioner,通过加盐或者哈希值来拆分这些key,从而将这些数据分散到不同的partition去执行。
如下算子会导致shuffle操作,是导致数据倾斜可能发生的关键点所在:groupByKey;reduceByKey;aggregaByKey;join;cogroup;

17. 你用sparksql处理的时候, 处理过程中用的dataframe还是直接写的sql?为什么?

这个问题的宗旨是问你spark sql 中dataframe和sql的区别,从执行原理、操作方便程度和自定义程度来分析 这个问题。

18. RDD中reduceBykey与groupByKey哪个性能好,为什么

reduceByKey:reduceByKey会在结果发送至reducer之前会对每个mapper在本地进行merge,有点类似于在MapReduce中的combiner。这样做的好处在于,在map端进行一次reduce之后,数据量会大幅度减小,从而减小传输,保证reduce端能够更快的进行结果计算。
groupByKey:groupByKey会对每一个RDD中的value值进行聚合形成一个序列(Iterator),此操作发生在reduce端,所以势必会将所有的数据通过网络进行传输,造成不必要的浪费。同时如果数据量十分大,可能还会造成OutOfMemoryError。
所以在进行大量数据的reduce操作时候建议使用reduceByKey。不仅可以提高速度,还可以防止使用groupByKey造成的内存溢出问题。

19. Spark master HA主从切换过程不会影响到集群已有作业的运行,为什么

不会的。
因为程序在运行之前,已经申请过资源了,driver和Executors通讯,不需要和master进行通讯的。

20. spark master使用zookeeper进行ha,有哪些源数据保存到Zookeeper里面

spark通过这个参数spark.deploy.zookeeper.dir指定master元数据在zookeeper中保存的位置,包括Worker,Driver和Application以及Executors。standby节点要从zk中,获得元数据信息,恢复集群运行状态,才能对外继续提供服务,作业提交资源申请等,在恢复前是不能接受请求的。
注:Master切换需要注意2点:
1、在Master切换的过程中,所有的已经在运行的程序皆正常运行! 因为Spark Application在运行前就已经通过Cluster Manager获得了计算资源,所以在运行时Job本身的 调度和处理和Master是没有任何关系。
2、在Master的切换过程中唯一的影响是不能提交新的Job:一方面不能够提交新的应用程序给集群, 因为只有Active Master才能接受新的程序的提交请求;另外一方面,已经运行的程序中也不能够因 Action操作触发新的Job的提交请求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/962284.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用Ollama和Open WebUI快速玩转大模型:简单快捷的尝试各种llm大模型,比如DeepSeek r1

Ollama本身就是非常优秀的大模型管理和推理组件,再使用Open WebUI更加如虎添翼! Ollama快速使用指南 安装Ollama Windows下安装 下载Windows版Ollama软件:Release v0.5.7 ollama/ollama GitHub 下载ollama-windows-amd64.zip这个文件即可…

EasyExcel写入和读取多个sheet

最近在工作中,作者频频接触到Excel处理,因此也对EasyExcel进行了一定的研究和学习,也曾困扰过如何处理多个sheet,因此此处分享给大家,希望能有所帮助 目录 1.依赖 2. Excel类 3.处理Excel读取和写入多个sheet 4. 执…

《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》

DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance)订阅 已识别 - 已识别问题,并且正在实施修复。 1月 29, 2025 - 20:57 CST 更新 - 我们将继续监控任何其他问题。 1月 28, 2025 - 22&am…

安卓(android)饭堂广播【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的(如果代码有错漏,可查看源码) 1.熟悉广播机制的实现流程。 2.掌握广播接收者的创建方式。 3.掌握广播的类型以及自定义官博的创建。 二、实验条件 熟悉广播机制、广播接收者的概念、广播接收者的创建方式、自定广播实现方式以及有…

分享|借鉴传统操作系统中分层内存系统的理念(虚拟上下文管理技术)提升LLMs在长上下文中的表现

《MemGPT: Towards LLMs as Operating Systems》 结论: 大语言模型(LLMs)上下文窗口受限问题的背景下, 提出了 MemGPT,通过类操作系统的分层内存系统的虚拟上下文管理技术, 提升 LLMs 在复杂人物&#…

games101-作业3

由于此次试验需要加载模型,涉及到本地环节,如果是windows系统,需要对main函数中的路径稍作改变: 这么写需要: #include "windows.h" 该段代码: #include "windows.h" int main(int ar…

Spring Boot 日志:项目的“行车记录仪”

一、什么是Spring Boot日志 (一)日志引入 在正式介绍日志之前,我们先来看看上篇文章中(Spring Boot 配置文件)中的验证码功能的一个代码片段: 这是一段校验用户输入的验证码是否正确的后端代码&#xff0c…

【大厂AI实践】OPPO:大规模知识图谱及其在小布助手中的应用

导读:OPPO知识图谱是OPPO数智工程系统小布助手团队主导、多团队协作建设的自研大规模通用知识图谱,目前已达到数亿实体和数十亿三元组的规模,主要落地在小布助手知识问答、电商搜索等场景。 本文主要分享OPPO知识图谱建设过程中算法相关的技…

机器学习周报-文献阅读

文章目录 摘要Abstract 1 相关知识1.1 WDN建模1.2 掩码操作(Masking Operation) 2 论文内容2.1 WDN信息的数据处理2.2 使用所收集的数据构造模型2.2.1 Gated graph neural network2.2.2 Masking operation2.2.3 Training loss2.2.4 Evaluation metrics 2…

工具的应用——安装copilot

一、介绍Copilot copilot是一个AI辅助编程的助手,作为需要拥抱AI的程序员可以从此尝试进入,至于好与不好,应当是小马过河,各有各的心得。这里不做评述。重点在安装copilot的过程中遇到了一些问题,然后把它总结下&…

后盾人JS--闭包明明白白

延伸函数环境生命周期 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> <…

顺启逆停程序

两台电机用Q0.0和Q0.1表示&#xff0c;分别有自身的启动和停止按钮&#xff0c;第一台电机启动后&#xff0c;第二台电机才能启动。停止时&#xff0c;第二台电机停止后&#xff0c;第一台电机才能停止。 1. 按下按钮SB1&#xff0c;接触器KM1线圈得电吸合&#xff0c;主触点…

登录授权流程

发起一个网络请求需要&#xff1a;1.请求地址 2.请求方式 3.请求参数 在检查中找到request method&#xff0c;在postman中设置同样的请求方式将登录的url接口复制到postman中&#xff08;json类型数据&#xff09;在payload中选择view parsed&#xff0c;将其填入Body-raw中 …

CUDA学习-内存访问

一 访存合并 1.1 说明 本部分内容主要参考: 搞懂 CUDA Shared Memory 上的 bank conflicts 和向量化指令(LDS.128 / float4)的访存特点 - 知乎 1.2 share memory结构 图1.1 share memory结构 放在 shared memory 中的数据是以 4 bytes(即 32 bits)作为 1 个 word,依…

基于Springboot的社区药房管理系统

博主介绍&#xff1a;java高级开发&#xff0c;从事互联网行业多年&#xff0c;熟悉各种主流语言&#xff0c;精通java、python、php、爬虫、web开发&#xff0c;已经做了多年的设计程序开发&#xff0c;开发过上千套设计程序&#xff0c;没有什么华丽的语言&#xff0c;只有实…

【力扣系列题目】最后一块石头的重量 分割回文串 验证回文串 等差数列划分{最大堆 背包 动态规划}

文章目录 七、最后一块石头的重量最后一块石头的重量【堆】[最后一块石头的重量 II](https://leetcode.cn/problems/last-stone-weight-ii/)【背包】 八、分割回文串分割回文串【分割子串方案数量】[分割回文串 II](https://leetcode.cn/problems/omKAoA/)【最少分割次数】[分割…

KIMI K1.5:用大语言模型扩展强化学习(论文翻译)

文章目录 KIMI K1.5技术报告摘要 1. 引言2. 方法&#xff1a;基于大语言模型的强化学习2.1 强化学习提示集整理2.2 长思维链监督微调2.3 强化学习2.3.1 问题设定2.3.2 策略优化2.3.3 长度惩罚2.3.4 采样策略2.3.5 训练方法的更多细节 2.4 长到短&#xff1a;短思维链模型的上下…

【Linux系统】进程间通信:实现命名管道通信

认识命名管道通信 命名管道通信的结构图示&#xff1a; 图中的 Server 和 Client 是不同的进程&#xff0c; Server 负责发送数据&#xff0c; Client 则是接收数据&#xff0c;进程之间通过命名管道进行数据通信 准备工作&#xff1a; 创建以下文件 Server.hpp #服务器类的…

SpringBoot Web开发(SpringMVC)

SpringBoot Web开发&#xff08;SpringMVC) MVC 核心组件和调用流程 Spring MVC与许多其他Web框架一样&#xff0c;是围绕前端控制器模式设计的&#xff0c;其中中央 Servlet DispatcherServlet 做整体请求处理调度&#xff01; . 除了DispatcherServletSpringMVC还会提供其他…

Linux《基础指令》

在之前的Linux《Linux简介与环境的搭建》当中我们已经初步了解了Linux的由来和如何搭建Linux环境&#xff0c;那么接下来在本篇当中我们就要来学习Linux的基础指令。在此我们的学习是包括两个部分&#xff0c;即指令和关于Linux的基础知识&#xff1b;因此本篇指令和基础知识的…