【AI论文】Sigma:对查询、键和值进行差分缩放,以实现高效语言模型

摘要:我们推出了Sigma,这是一个专为系统领域设计的高效大型语言模型,其独特之处在于采用了包括DiffQKV注意力机制在内的新型架构,并在我们精心收集的系统领域数据上进行了预训练。DiffQKV注意力机制通过根据查询(Q)、键(K)和值(V)组件对模型性能和效率指标的不同影响,对它们进行差异化优化,从而显著提升了Sigma的推理效率。具体来说,我们(1)进行了大量实验,展示了模型对K和V组件压缩的不同敏感性,进而开发出了差异化压缩的KV方法;(2)提出了增强型Q,通过扩展Q头的维度,在几乎不影响推理速度的情况下,增强了模型的表示能力。严格的理论和实证分析表明,DiffQKV注意力机制显著提高了效率,在长上下文场景中,与传统分组查询注意力(GQA)相比,推理速度提升了高达33.36%。我们在6T个token上对Sigma进行了预训练,这些数据来自多个来源,包括我们精心收集的195亿个系统领域数据,以及1T个合成和重写数据。在通用领域,Sigma的表现与其他最先进的模型相当。在系统领域,我们引入了首个全面的基准测试AIMicius,Sigma在所有任务中均表现出色,显著优于GPT-4,绝对提升幅度高达52.5%。Huggingface链接:Paper page,论文链接:2501.13629

1. 引言

近年来,大型语言模型(LLMs)在各个领域取得了显著进展,展现了强大的性能。然而,随着模型规模的扩大,其计算复杂度和内存需求也随之增加,给实际应用带来了挑战。特别是在系统领域,即利用AI模型自动验证、评估、诊断和优化AI基础设施(如硬件、配置、云服务、数据库和工作负载)的领域,尽管具有巨大潜力,但尚未得到足够的重视。本文介绍了Sigma,一个专为系统领域设计的高效大型语言模型,通过采用包括DiffQKV注意力机制在内的新型架构,显著提高了推理效率。

2. Sigma模型概述

2.1 DiffQKV注意力机制

DiffQKV注意力机制是Sigma模型的核心创新点。在标准的多头注意力机制(MHA)中,查询(Q)、键(K)和值(V)通常使用相同数量的头和相同维度的头。然而,DiffQKV注意力机制打破了这一传统做法,允许Q、K、V组件具有不同数量的头和不同维度的头。此外,在推理过程中,K和V缓存的检索策略也各不相同。

2.1.1 差分压缩的KV

实验发现,模型性能对V向量的压缩比K向量更为敏感。因此,DiffQKV注意力机制对K向量采用更激进的压缩算法,而对V向量则采用较轻的压缩形式。尽管V向量的压缩程度相对较低,但在推理过程中可以通过仅加载与最高注意力分数对应的V向量来进一步优化,从而在保持模型性能的同时大幅减少内存使用。

2.1.2 增强的Q

增强的Q涉及采用比KV头更高的维度来扩展Q头维度,从而增强模型的表示能力,同时对推理速度的影响最小。实验表明,向Q头组件引入额外参数可以有效提升模型性能。

2.2 Sigma模型架构

Sigma模型基于DiffQKV注意力机制构建,并采用了两种模型规模:15亿参数和100亿参数,分别称为Sigma-1.5B和Sigma-10B。在训练过程中,为了平衡模型性能和KV缓存成本,对Sigma-1.5B和Sigma-10B的K头维度不进行压缩,仅减少K头的数量。具体来说,K头设置为4,而V头的数量是Q头数量的一半,设置为16。对于Sigma-1.5B,Q头维度设置为3072,对于Sigma-10B,则设置为6144,相当于隐藏状态的1.5倍,以扩展Q的表示空间。

3. DiffQKV注意力机制的理论与实证分析

3.1 理论分析

KV缓存和注意力计算是注意力层中的两个关键组件。通过减少K头的数量,Sigma模型能够显著降低KV缓存操作的成本。与标准的分组查询注意力(GQA)设计相比,Sigma模型在KV缓存操作上的成本降低率理论上可达到37.5%。尽管注意力计算是计算密集型的,但由于KV缓存操作是I/O密集型的,因此KV缓存成本的降低对整体推理效率的提升具有显著影响。

3.2 实现

尽管减少K头数量在理论上能够显著提高推理效率,但在实际部署中却面临挑战。为了解决这个问题,本文提出了几种临时解决方案,并强调了需要更广泛的支持来部署DiffQKV。其中,包括KV缓存的加载和存储策略以及灵活的注意力计算方法。

3.3 实证分析

通过一系列实验,验证了Sigma模型在推理效率上的显著提升。实验结果表明,与标准模型相比,Sigma模型在内核执行时间(KET)和CUDA事件经过时间(CEET)上均表现出显著优势。特别是在处理长上下文场景时,Sigma模型能够实现高达33.36%的推理速度提升。

4. 系统领域预训练与AIM ICIUS基准

4.1 系统领域数据收集

为了训练Sigma-System模型,本文精心收集了系统领域数据。通过识别来自120多个系统相关网站的15个主要源类别,收集了约195亿个令牌的数据。这些数据涵盖了学术论文、技术博客、开发者论坛、Stack Overflow等多个来源,确保了系统领域知识的全面性和多样性。

4.2 AIM ICIUS基准

为了评估系统领域任务的性能,本文构建了AIM ICIUS基准,包括CMDGen、Infrawise、Optiflow和NL2KQL四个主要任务。这些任务分别评估了模型在GPU相关命令生成、基准测试结果检索、网络拓扑优化和基础设施问题分析等方面的能力。实验结果表明,Sigma-System模型在AIM ICIUS基准上的性能显著优于其他基线模型,包括GPT-4等最先进的模型。

5. 性能评估

5.1 预训练设置

Sigma模型的预训练数据包括通用领域数据和系统领域特定属性数据,总计约6万亿个令牌。预训练过程分为多个阶段,逐步引入不同领域的数据,并采用退火策略进行微调。实验结果表明,经过充分预训练的Sigma模型在通用领域任务上也表现出色,与其他最先进的模型相比具有可比的性能。

5.2 系统领域性能

在AIM ICIUS基准上的实验结果表明,Sigma-System模型在所有任务上均表现出色,显著优于其他基线模型。特别是在CMDGen和Optiflow任务上,Sigma-System模型的优势更为明显,这得益于其在系统领域数据上的充分预训练和针对系统任务的微调。

5.3 通用领域性能

除了系统领域任务外,本文还对Sigma模型在通用领域任务上的性能进行了评估。实验结果表明,Sigma模型在常识推理、阅读理解、文本理解、语言熟练度、一般知识、编码和数学问题解决等方面均表现出色,与其他最先进的模型相比具有可比的性能。

6. 相关工作

近年来,为了提高LLMs的推理效率,研究人员探索了多种方法。其中,针对KV缓存优化的研究尤为突出。然而,大多数先前的研究倾向于对K和V向量进行均匀压缩,并且很少考虑对Q的优化。相比之下,DiffQKV注意力机制通过差分缩放Q、K、V组件,为提高LLMs的推理效率提供了新的思路。

7. 结论与未来工作

本文介绍了Sigma模型,一个专为系统领域设计的高效大型语言模型。通过采用DiffQKV注意力机制,Sigma模型在推理效率上实现了显著提升。实验结果表明,Sigma模型在处理长上下文场景时能够显著优于其他基线模型。尽管Sigma模型已经取得了显著进展,但仍然存在许多改进空间。未来的工作将集中在进一步优化Sigma模型的架构、扩展AIM ICIUS基准的任务范围以及提高预训练数据的质量等方面。

8. 具体实验细节与案例分析

8.1 实验细节

在实验过程中,本文采用了多种基准和评估指标来全面评估Sigma模型的性能。例如,在CMDGen任务上,采用了CMD分数、输出分数、校准分数、精确匹配、成功率和准确率等多个指标来衡量模型的性能。此外,为了验证DiffQKV注意力机制的有效性,本文还进行了大量消融实验,通过逐步引入差分压缩的KV和增强的Q等策略,分析了它们对模型性能的影响。

8.2 案例分析

以CMDGen任务为例,本文详细分析了Sigma模型在处理GPU相关命令生成任务时的表现。实验结果表明,Sigma模型能够准确生成符合要求的GPU命令,并且在执行结果上与真实命令高度相似。此外,Sigma模型在处理不同平台和不同类型的GPU命令时也表现出良好的泛化能力。这些实验结果充分证明了Sigma模型在系统领域任务上的有效性和实用性。

9. Sigma模型的应用前景与挑战

9.1 应用前景

Sigma模型在系统领域具有广泛的应用前景。例如,在AI基础设施的自动化优化方面,Sigma模型可以自动诊断和优化硬件、配置、云服务、数据库和工作负载等方面的问题,从而提高AI系统的效率和性能。此外,Sigma模型还可以应用于自然语言处理、知识图谱构建、智能问答等多个领域,为人工智能技术的发展提供有力支持。

9.2 挑战

尽管Sigma模型已经取得了显著进展,但在实际应用中仍然面临许多挑战。例如,如何进一步提高模型的推理效率以满足实时性要求?如何扩展模型的应用范围以覆盖更多领域和任务?如何提高模型的鲁棒性和可解释性以增强用户的信任感?这些问题都是未来研究需要重点关注的方向。

综上所述,Sigma模型是一个专为系统领域设计的高效大型语言模型,通过采用DiffQKV注意力机制显著提高了推理效率。实验结果表明,Sigma模型在处理系统领域任务时表现出色,并且在通用领域任务上也具有可比的性能。未来的工作将集中在进一步优化Sigma模型的架构、扩展AIM ICIUS基准的任务范围以及提高预训练数据的质量等方面,以推动Sigma模型在实际应用中的广泛部署和应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/960731.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Day27-【13003】短文,单链表应用代码举例

文章目录 单链表的应用概览查找单链表倒数第k个结点查找单链表的中间结点将单链表逆置 第二章真题检测 单链表的应用概览 查找单链表倒数第k个结点 本节给出单链表的4个应用示例。单链表结点的定义与本章第三节中的定义相同。为了方便,重新写出来。 #define TRUE …

java求职学习day18

常用的设计原则和设计模式 1 常用的设计原则(记住) 1.1 软件开发的流程 需求分析文档、概要设计文档、详细设计文档、编码和测试、安装和调试、维护和升级 1.2 常用的设计原则 (1)开闭原则(Open Close Principle…

2025美赛美国大学生数学建模竞赛A题完整思路分析论文(43页)(含模型、可运行代码和运行结果)

2025美国大学生数学建模竞赛A题完整思路分析论文 目录 摘要 一、问题重述 二、 问题分析 三、模型假设 四、 模型建立与求解 4.1问题1 4.1.1问题1思路分析 4.1.2问题1模型建立 4.1.3问题1样例代码(仅供参考) 4.1.4问题1样例代码运行结果&…

UART ,IIC 和SPI三种总线协议

1.UART 1.1 简介 UART(Universal Asynchronous Receiver/Transmitter)即通用异步收发器。 常见的串行、异步通信总线,两条数据线Tx、Rx,实现全双工通信,常用于主机与外设的通信,点对点。 1.2 硬件连接 交叉…

IPhone14 Pro 设备详情

目录 产品宣传图内部图——后设备详细信息 产品宣传图 内部图——后 设备详细信息 信息收集于HubWeb.cn

海外问卷调查渠道查如何设置:最佳实践+示例

随着经济全球化和一体化进程的加速,企业间的竞争日益加剧,为了获得更大的市场份额,对企业和品牌而言,了解受众群体的的需求、偏好和痛点才是走向成功的关键。而海外问卷调查才是获得受众群体痛点的关键,制作海外问卷调…

如何跨互联网adb连接到远程手机-蓝牙电话集中维护

如何跨互联网adb连接到远程手机-蓝牙电话集中维护 --ADB连接专题 一、前言 随便找一个手机,安装一个App并简单设置一下,就可以跨互联网的ADB连接到这个手机,从而远程操控这个手机做各种操作。你敢相信吗?而这正是本篇想要描述的…

linux——进程树的概念和示例

一些程序进程运行后,会调用其他进程,这样就组成了一个进程树。 比如,在Windows XP的“运行”对话框中输入“cmd”启动命令行控制台,然后在命令行中输入“notepad”启动记事本,那么命令行控制台进程“cmd.exe”和记事本进程“note…

linux系统centos版本上安装mysql5.7

步骤 1: 安装 MySQL 5.7 添加 MySQL Yum Repository 首先,你需要添加 MySQL 的官方 Yum repository。打开终端并执行以下命令: sudo rpm -Uvh https://dev.mysql.com/get/mysql57-community-release-el7-11.noarch.rpm 这条命令会为 CentOS 7 添加 MySQL…

Cross-Resolution知识蒸馏论文学习

TPAMI 2024:Pixel Distillation: Cost-Flexible Distillation Across Image Sizes and Heterogeneous Networks 教师模型使用高分辨率输入进行学习,学生模型使用低分辨率输入进行学习 学生蒸馏损失:Lpkd和Lisrd Lpkd:任务损失lo…

java爬虫工具Jsoup学习

目录 前言 一、基本使用 二、爬取豆瓣电影的案例 三、Jsoup能做什么? 四、Jsoup相关概念 五、Jsoup获取文档 六、定位选择元素 七、获取数据 八、具体案例 前言 JSoup是一个用于处理HTML的Java库,它提供了一个非常方便类似于使用DOM&#xff0…

29. 【.NET 8 实战--孢子记账--从单体到微服务】--项目发布

这是本专栏最后一篇文章了,在这片文章里我们不重点讲解如何配置服务器,重点讲如何发布服务,我们开始吧。 一、服务器配置 服务器配置包含:服务器的选择和项目运行环境的配置,下面我们分别来讲解一下。 在服务器选择上…

论文笔记(六十三)Understanding Diffusion Models: A Unified Perspective(五)

Understanding Diffusion Models: A Unified Perspective(五) 文章概括基于得分的生成模型(Score-based Generative Models) 文章概括 引用: article{luo2022understanding,title{Understanding diffusion models: A…

TOGAF之架构标准规范-信息系统架构 | 数据架构

TOGAF是工业级的企业架构标准规范,信息系统架构阶段是由数据架构阶段以及应用架构阶段构成,本文主要描述信息系统架构阶段中的数据架构阶段。 如上所示,信息系统架构(Information Systems Architectures)在TOGAF标准规…

自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

代码1实现逻辑回归并保存模型 import torch import numpy as np import torch.nn as nn from torch.utils.data import DataLoader, TensorDatasetdata [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], [-1.4, -37.3], [-1.8, -49.1], [1.5, 75.6],[0.…

基于回归分析法的光伏发电系统最大功率计算simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于回归分析法的光伏发电系统最大功率计算simulink建模与仿真。选择回归法进行最大功率点的追踪,使用光强和温度作为影响因素,电压作为输出进行建模。…

【数据结构】 并查集 + 路径压缩与按秩合并 python

目录 前言模板朴素实现路径压缩按秩合并按树高为秩按节点数为秩 总结 前言 并查集的基本实现通常使用森林来表示不同的集合,每个集合用一棵树表示,树的每个节点有一个指向其父节点的指针。 如果一个节点是它自己的父节点,那么它就是该集合的代…

Flutter android debug 编译报错问题。插件编译报错

下面相关内容 都以 Mac 电脑为例子。 一、问题 起因:(更新 Android studio 2024.2.2.13、 Flutter SDK 3.27.2) 最近 2025年 1 月 左右,我更新了 Android studio 和 Flutter SDK 再运行就会出现下面的问题。当然 下面的提示只是其…

CSAPP学习:前言

前言 本书简称CS:APP。 背景知识 一些基础的C语言知识 如何阅读 Do-做系统 在真正的系统上解决具体的问题,或是编写和运行程序。 章节 2025-1-27 个人认为如下章节将会对学习408中的操作系统与计算机组成原理提供帮助,于是先凭借记忆将其简单…

动态规划DP 数字三角型模型 方格取数(题目详解+C++代码实现)

方格取数 原题链接 AcWing 1027. 方格取数 题目描述 设有 NN 的方格图,我们在其中的某些方格中填入正整数,而其它的方格中则放入数字0。 如下图所示: 某人从图中的左上角 A 出发,可以向下行走,也可以向右行走&…