最新智能优化算法:牛优化( Ox Optimizer,OX)算法求解经典23个函数测试集,MATLAB代码

一、牛优化算法

牛优化( OX Optimizer,OX)算法由 AhmadK.AlHwaitat 与 andHussamN.Fakhouri于2024年提出,该算法的设计灵感来源于公牛的行为特性。公牛以其巨大的力量而闻名,能够承载沉重的负担并进行远距离运输。这种行为特征可以被转化为优化过程中的优势,即在探索广阔而复杂的搜索空间时保持强大的鲁棒性。公牛不仅强壮,还具有灵活性、稳健性、适应性和协作能力等特点。这些特点使得OX优化器能够在不断变化的环境和优化需求中有效地找到最优解。
在这里插入图片描述
算法步骤:
参数初始化:首先,定义问题的解空间范围、种群规模以及最大迭代次数等关键参数,并根据需要选择合适的适应度函数来评估个体的优劣。
种群初始化:生成一个初始种群,其中每个个体代表问题的一个候选解。这些个体的位置在解空间中随机分布,以确保初始搜索的多样性。
适应度评估:计算种群中每个个体的适应度值,该值反映了个体在当前解空间中的优劣程度。
繁殖选择
精英策略:保留适应度最高的个体,确保优质解不会因后续操作而丢失。
杂交操作:从当前种群中选择个体进行杂交。杂交过程通过交换两个父代个体的基因信息,生成新的子代个体。这一操作有助于引入新的解特征,扩大搜索范围。
变异操作:对子代个体进行变异。每个个体有较高的概率随机选择一个维度进行微小的随机扰动,这种变异操作能够进一步增强种群的多样性,避免过早收敛。
局部优化器
置换探索:从当前最优解或随机子集中选取个体,通过局部优化器进行置换探索。例如,随机暴露置换群中的元素,并通过应用均匀分布的随机值来修正这些元素,从而生成新的置换。这一过程能够精化解的质量,提高局部搜索的效率。
整体最优解集中消去与鲁棒优化:在每次迭代中,跟踪由局部优化器生成的置换,并将这些置换中的所有解集中到集合S中。对于每个新的解x,检查是否存在另一个解x’∈S,其分量在设定的容差范围内。通过持续集中消去,有效保持算法的推进,确保搜索过程的高效性和鲁棒性。
迭代更新:重复上述步骤,直到达到最大迭代次数或满足其他停止条件。在整个优化过程中,种群逐渐进化,适应度较高的个体更有可能被保留下来,而适应度较低的个体则被淘汰。

在这里插入图片描述

参考文献:
[1]Al Hwaitat AK, Fakhouri HN. The OX Optimizer: A Novel Optimization Algorithm and Its Application in Enhancing Support Vector Machine Performance for Attack Detection. Symmetry. 2024; 16(8):966. https://doi.org/10.3390/sym16080966

二、23个函数介绍

在这里插入图片描述
参考文献:

[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.

三、部分代码及结果

SearchAgents_no = 100;
Max_iter = 1000;
fn=12;
Function_name=strcat('F',num2str(fn));
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_score,Best_pos,PO_cg_curve]=OX(SearchAgents_no,Max_iter,lb,ub,dim,fobj);
semilogy(PO_cg_curve,'LineWidth',2)
title(Function_name)
xlabel('迭代次数');
ylabel('适应度值');

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码见下方名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/972093.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【linux】在 Linux 服务器上部署 DeepSeek-r1:70b 并通过 Windows 远程可视化使用

【linux】在 Linux 服务器上部署 DeepSeek-r1:70b 并通过 Windows 远程可视化使用 文章目录 【linux】在 Linux 服务器上部署 DeepSeek-r1:70b 并通过 Windows 远程可视化使用个人配置详情一、安装ollama二、下载deepseek版本模型三、在 Linux 服务器上配置 Ollama 以允许远程访…

【Linux网络编程】应用层协议HTTP(请求方法,状态码,重定向,cookie,session)

🎁个人主页:我们的五年 🔍系列专栏:Linux网络编程 🌷追光的人,终会万丈光芒 🎉欢迎大家点赞👍评论📝收藏⭐文章 ​ Linux网络编程笔记: https://blog.cs…

Chrome多开终极形态解锁!「窗口管理工具+IP隔离插件

Web3项目多开,继ads指纹浏览器钱包被盗后,更多人采用原生chrome浏览器,当然对于新手,指纹浏览器每月成本也是一笔不小开支,今天逛Github发现了这样一个解决方案,作者开发了窗口管理工具IP隔离插件&#xff…

Canal同步MySQL增量数据

引言 在现在的系统开发中,为了提高查询效率 , 以及搜索的精准度, 会大量的使用 redis 、memcache 等 nosql 系统的数据库 , 以及 solr 、 elasticsearch 类似的全文检索服务。 那么这个时候, 就又有一个问题需要我们来考虑, 就是数据同步的问题, 如何将实时变化的…

MacOS 15.3 卸载系统内置软件

1、关闭系统完整性(SIP) 进入恢复模式(recovery) 如果您使用的是黑苹果或者白苹果,可以选择 重启按住CommandR 进入,如果是M系列芯片,长按开机键,进入硬盘选择界面进入。 我是MacMini M4芯片,关…

【核心算法篇七】《DeepSeek异常检测:孤立森林与AutoEncoder对比》

大家好,今天我们来深入探讨一下《DeepSeek异常检测:孤立森林与AutoEncoder对比》这篇技术博客。我们将从核心内容、原理、应用场景等多个方面进行详细解析,力求让大家对这两种异常检测方法有一个全面而深入的理解。 一、引言 在数据科学和机器学习领域,异常检测(Anomaly…

Ubuntu24.04无脑安装docker(含图例)

centos系统请看这篇 Linux安装Docker教程(详解) 一. ubuntu更换软件源 请看这篇:Ubuntu24.04更新国内源 二. docker安装 卸载老版docker(可忽略) sudo apt-get remove docker docker-engine docker.io containerd runc更新软件库 sudo a…

thingboard告警信息格式美化

原始报警json内容: { "severity": "CRITICAL","acknowledged": false,"cleared": false,"assigneeId": null,"startTs": 1739801102349,"endTs": 1739801102349,"ackTs": 0,&quo…

✨2.快速了解HTML5的标签类型

✨✨HTML5 的标签类型丰富多样&#xff0c;每种类型都有其独特的功能和用途&#xff0c;以下是一些常见的 HTML5 标签类型介绍&#xff1a; &#x1f98b;结构标签 &#x1faad;<html>&#xff1a;它是 HTML 文档的根标签&#xff0c;所有其他标签都包含在这个标签内&am…

day12_调度和可视化

文章目录 day12_调度和可视化一、任务调度1、开启进程2、登入UI界面3、配置租户4、创建项目5、创建工作流5.1 HiveSQL部署&#xff08;掌握&#xff09;5.2 SparkDSL部署&#xff08;掌握&#xff09;5.3 SparkSQL部署&#xff08;熟悉&#xff09;5.4 SeaTunnel部署&#xff0…

使用nvm管理node.js版本,方便vue2,vue3开发

在Vue项目开发过程中&#xff0c;我们常常会遇到同时维护Vue2和Vue3项目的情况。由于不同版本的Vue对Node.js 版本的要求有所差异&#xff0c;这就使得Node.js 版本管理成为了一个关键问题。NVM&#xff08;Node Version Manager&#xff09;作为一款强大的Node.js 版本管理工具…

Java8适配的markdown转换html工具(FlexMark)

坐标地址&#xff1a; <dependency><groupId>com.vladsch.flexmark</groupId><artifactId>flexmark-all</artifactId><version>0.60.0</version> </dependency> 工具类代码&#xff1a; import com.vladsch.flexmark.ext.tab…

Qt开发①Qt的概念+发展+优点+应用+使用

目录 1. Qt的概念和发展 1.1 Qt的概念 1.2 Qt 的发展史&#xff1a; 1.3 Qt 的版本 2. Qt 的优点和应用 2.1 Qt 的优点&#xff1a; 2.2 Qt 的应用场景 2.3 Qt 的应用案例 3. 搭建 Qt 开发环境 3.1 Qt 的开发工具 3.2 Qt SDK 的下载和安装 3.3 Qt 环境变量配置和使…

vscode插件开发

准备 安装开发依赖 npm install -g yo generator-code 安装后&#xff0c;运行命令 yo code 运行 打开项目&#xff0c; 点击 vscode 调式 按 F5 或点击调试运行按钮 会打开一个新窗口&#xff0c;在新窗口按快捷键 CtrlShiftP &#xff0c;搜索 Hello World 选择执行 右下角出…

自制简单的图片查看器(python)

图片格式&#xff1a;支持常见的图片格式&#xff08;JPG、PNG、BMP、GIF&#xff09;。 import os import tkinter as tk from tkinter import filedialog, messagebox from PIL import Image, ImageTkclass ImageViewer:def __init__(self, root):self.root rootself.root.…

嵌入式 lwip http server makefsdata

背景&#xff1a; 基于君正X2000 MCU Freertoslwip架构 实现HTTP server服务&#xff0c;MCU作为HTTP服务器通过网口进行数据包的传输&#xff0c;提供网页服务。其中设计到LWIP提供的工具makefsdata&#xff0c;常用于将文件或目录结构转换为适合嵌入到固件中的二进制格式。 …

架构设计系列(三):架构模式

一、概述 关于移动应用开发中常见的架构模式&#xff0c;这些模式是为了克服早期模式的局限性而引入。常见的 架构模式有&#xff1a; MVC, MVP, MVVM, MVVM-C, and VIPER 二、MVC, MVP, MVVM, MVVM-C, and VIPER架构模式 MVC、MVP、MVVM、MVVM-C 和 VIPER 是移动应用开发中…

CSS盒模

CSS盒模型就像一个快递包裹&#xff0c;网页上的每个元素都可以看成是这样一个包裹&#xff0c;它主要由以下几个部分组成&#xff1a; 内容&#xff08;content&#xff09;&#xff1a;就像包裹里真正装的东西&#xff0c;比如文字、图片等。在CSS里&#xff0c;可用width&a…

解决DeepSeek服务器繁忙的有效方法

全球42%的企业遭遇过AI工具服务器过载导致内容生产中断&#xff08;数据来源&#xff1a;Gartner 2025&#xff09;。当竞品在凌晨3点自动发布「智能家居安装指南」时&#xff0c;你的团队可能正因DeepSeek服务器繁忙错失「净水器保养教程」的流量黄金期⏳。147SEO智能调度系统…

Zookeeper 和 Redis 哪种更好?

目录 前言 &#xff1a; 什么是Zookeeper 和 Redis &#xff1f; 1. 核心定位与功能 2. 关键差异点 (1) 一致性模型 (2) 性能 (3) 数据容量 (4) 高可用性 3. 适用场景 使用 Zookeeper 的场景 使用 Redis 的场景 4. 替代方案 5. 如何选择&#xff1f; 6. 常见误区 7. 总结 前言…