2025.1.26周报
- 文献阅读
- 题目信息
- 摘要
- Abstract
- 创新点
- 网络架构
- 实验
- 结论
- 缺点以及后续展望
- 总结
文献阅读
题目信息
- 题目: C-RNN-GAN: Continuous recurrent neural networks with adversarial training
- 会议期刊: NIPS
- 作者: Olof Mogren
- 发表时间: 2016
- 文章链接:https://arxiv.org/pdf/1611.09904
摘要
生成对抗网络(GANs)目的是生成数据,而循环神经网络(RNNs)常用于生成数据序列。目前已有研究用RNN进行音乐生成,但多使用符号表示。本论文中,作者研究了使用对抗训练生成连续数据的序列可行性,并使用古典音乐的midi文件进行评估。作者提出C-RNN-GAN(连续循环生成对抗网络)这种神经网络架构,用对抗训练来对序列的整体联合概率建模并生成高质量的数据序列。通过在古典音乐midi格式序列上训练该模型,并用音阶一致性和音域等指标进行评估,以验证生成对抗训练是一种可行的训练网络的方法,提出的模型为连续数据的生成提供了新思路。
Abstract
The purpose of Generative Adversarial Networks (GANs) is to generate data, while Recurrent Neural Networks (RNNs) are often used for generating data sequences. Currently, there have been many studies using RNNs for music generation, but most of them employ symbolic representations. In this paper, the authors investigate the feasibility of using adversarial training to generate sequences of continuous data, and evaluate it using classical music MIDI files. They propose the C-RNN-GAN (Continuous Recurrent Neural Network GAN), a neural network architecture that uses adversarial training to model the joint probability of the entire sequence and generate high-quality data sequences. By training this model on classical music MIDI format sequences and assessing it with metrics such as scale consistency and range, the authors demonstrate that adversarial training is a viable method for training networks, and the proposed model offers a new approach for the generation of continuous data.
创新点
本研究创新性在于提出C-RNN-GAN模型,作者采用对抗训练方式处理连续序列数据。作者使用四个实值标量对音乐信号进行生成,此外,还使用了反向传播算法进行端到端训练。
网络架构
提出C-RNN-GAN模型,RNN-GAN 由生成器(Generator)和判别器(Discriminator)两个主要部分组成。
如下图所示:
生成器(G)从随机输入(噪声)生成音乐序列。其包含LSTM层和全连接层。输入为随机噪声输入(如,随机向量);输出是生成的音乐序列。
判别器(D)用于区分生成的音乐序列和真实音乐序列。D由Bi-LSTM(双向长短期记忆网络)组成。输入为真实或生成的音乐序列;输出为一个概率值(表示输入序列是真实音乐的概率)。
在训练中,G与D相互对抗,生成器和判别器交替训练,生成器的目标是欺骗判别器,判别器的目标是准确区分真实和生成的音乐。
其中G与D的损失函数表达式如下:
L
G
=
1
m
∑
i
=
1
m
log
(
1
−
D
(
G
(
z
(
i
)
)
)
)
L_{G}=\frac{1}{m} \sum_{i=1}^{m} \log \left(1-D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right)
LG=m1i=1∑mlog(1−D(G(z(i))))
L
D
=
1
m
∑
i
=
1
m
[
−
log
D
(
x
(
i
)
)
−
(
log
(
1
−
D
(
G
(
z
(
i
)
)
)
)
)
]
L_{D}=\frac{1}{m} \sum_{i=1}^{m}\left[-\log D\left(\boldsymbol{x}^{(i)}\right)-\left(\log \left(1-D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right)\right)\right]
LD=m1i=1∑m[−logD(x(i))−(log(1−D(G(z(i)))))]
其中,
z
(
i
)
z^{(i)}
z(i) 是
[
0
,
1
]
k
[0,1]^{k}
[0,1]k 中的均匀随机向量的序列,而
x
(
i
)
x^(i)
x(i) 是来自训练数据的序列,k 表示随机序列中的数据的维数。G 中每个单元格的输入是一个随机向量,与先前单元格的输出串联。.
其实就跟我们之前阅读的GAN差不多,这里就不在赘述了。
实验
从网络收集midi格式的古典音乐文件作为训练数据,训练数据是以midi格式的音乐文件形式从网上收集的,包含着名的古典音乐作品。 每个midi事件被加载并与其持续时间,音调,强度(速度)以及自上一音调开始以来的时间一起保存。音调数据在内部用相应的声音频率表示。所有数据归一化为每秒384点的刻度分辨率。 该数据包含来自160位不同古典音乐作曲家的3697个midi文件,最后作者通过多维度指标评估生成音乐。
实验的模型评估指标:
Polyphony(复音):衡量两个音调同时演奏的频率。
Scale consistency(音阶一致性):通过计算属于标准音阶的音调比例得出,报告最匹配音阶的数值。
Repetitions (重复度):计算样本中的重复程度,仅考虑音调及其顺序,不考虑时间。
Tone span(音域):样本中最低和最高音调之间的半音步数。
模型参数:
生成器(G)和判别器(D)中的LSTM网络深度都为2,每个LSTM单元具有350个隐藏单元。
D双向的,而G是单向的。其中,来自D中的每个LSTM单元的输出被馈送到完全连接的层,其中权重在时间步长上共享,然后每个单元的sigmoid输出被平均化。
此外,在训练中使用反向传播(BPTT)和小批量随机梯度下降。学习率设置为0.1,并且将L2正则化应用于G和D中的权重。模型预训练6个epochs,平方误差损失以预测训练序列中的下一个事件。每个LSTM单元的输入是随机向量v,与前一时间步的输出连接。 v均匀分布在
[
0
,
1
]
k
[0,1]^k
[0,1]k 中,并且k被选择为每个音调中的特征数量。在预训练期间,作者使用序列长度的模式,从短序列开始,从训练数据中随机样,最终用越来越长的序列训练模型。
实验结果:
C-RNN-GAN随着训练进行,生成音乐的复杂性增加。独特音调数量有微弱上升趋势,音阶一致性在10-15个周期后趋于稳定。
3音调重复在前25个周期有上升趋势,然后保持在较低水平,其与使用的音调数量相关。
Baseline(一个类似于生成器的循环网络)变化程度未达到C-RNN-GAN的水平。使用的独特音调数量一直低很多,音阶一致性与C-RNN-GAN相似,但音域与独特音调数量的关系比C-RNN-GAN更紧密,表明其使用的音调变化性更小。
C-RNN-GAN-3(3的意思是每个LSTM单元三个音调输出)与C-RNN-GAN和Baseline模型相比,获得了更高的复音分数。
在第50 - 55个周期左右达到许多零值输出状态后,在音域、独特音调数量、强度范围和3音调重复方面达到了更高的值。
真实音乐强度范围与生成音乐相似,音阶一致性略高但变化更大,复音分数与C-RNN-GAN-3相似,3音调重复高很多,但由于歌曲长度不同难以比较(通过除以真实音乐长度与生成音乐长度之比进行了归一化)。
从实验结果可以看出对抗训练有助于模型学习更多变、音域更广、强度范围更大的音乐。其中,模型每个LSTM单元输出多于一个音调有助于生成复音分数更高的音乐。虽然生成音乐是复音的,但在实验评估的复音分数方面,C-RNN-GAN得分较低,而允许每个LSTM单元同时输出多达三个音调的模型(C-RNN-GAN-3)在复音方面得分更好。虽然样本之间的时间差异较大,但在一首曲子内大致相同。
代码:https://github.com/olofmogren/c-rnn-gan
"""
模型参数:
learning_rate - 学习率的初始值
max_grad_norm - 梯度的最大允许范数
num_layers - LSTM 层的数量
songlength - LSTM 展开的步数
hidden_size - LSTM 单元的数量
epochs_before_decay - 使用初始学习率训练的轮数
max_epoch - 训练的总轮数
keep_prob - Dropout 层中保留权重的概率
lr_decay - 在 "epochs_before_decay" 之后每个轮数的学习率衰减
batch_size - 批量大小
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time, datetime, os, sys
import pickle as pkl
from subprocess import call, Popen
import numpy as np
import tensorflow as tf
from tensorflow.python.client import timeline
import music_data_utils
from midi_statistics import get_all_stats
flags = tf.flags
logging = tf.logging
flags.DEFINE_string("datadir", None, "保存和加载 MIDI 音乐文件的目录")
flags.DEFINE_string("traindir", None, "保存检查点和 gnuplot 文件的目录")
flags.DEFINE_integer("epochs_per_checkpoint", 2, "每个检查点之间进行的训练轮数")
flags.DEFINE_boolean("log_device_placement", False, "输出设备放置的信息")
flags.DEFINE_string("call_after", None, "退出后调用的命令")
flags.DEFINE_integer("exit_after", 1440, "运行多少分钟后退出")
flags.DEFINE_integer("select_validation_percentage", None, "选择作为验证集的数据的随机百分比")
flags.DEFINE_integer("select_test_percentage", None, "选择作为测试集的数据的随机百分比")
flags.DEFINE_boolean("sample", False, "从模型中采样输出。假设训练已经完成。将采样输出保存到文件中")
flags.DEFINE_integer("works_per_composer", None, "限制每个作曲家加载的作品数量")
flags.DEFINE_boolean("disable_feed_previous", False, "在生成器中,将前一个单元的输出作为下一个单元的输入")
flags.DEFINE_float("init_scale", 0.05, "权重的初始缩放值")
flags.DEFINE_float("learning_rate", 0.1, "学习率")
flags.DEFINE_float("d_lr_factor", 0.5, "学习率衰减因子")
flags.DEFINE_float("max_grad_norm", 5.0, "梯度的最大允许范数")
flags.DEFINE_float("keep_prob", 0.5, "保留权重的概率。1表示不使用 Dropout")
flags.DEFINE_float("lr_decay", 1.0, "在 'epochs_before_decay' 之后每个轮数的学习率衰减")
flags.DEFINE_integer("num_layers_g", 2, "生成器 G 中堆叠的循环单元数量")
flags.DEFINE_integer("num_layers_d", 2, "判别器 D 中堆叠的循环单元数量")
flags.DEFINE_integer("songlength", 100, "限制歌曲输入的事件数量")
flags.DEFINE_integer("meta_layer_size", 200, "元信息模块的隐藏层大小")
flags.DEFINE_integer("hidden_size_g", 100, "生成器 G 的循环部分的隐藏层大小")
flags.DEFINE_integer("hidden_size_d", 100, "判别器 D 的循环部分的隐藏层大小,默认与 G 相同")
flags.DEFINE_integer("epochs_before_decay", 60, "开始衰减之前进行的轮数")
flags.DEFINE_integer("max_epoch", 500, "停止训练之前的总轮数")
flags.DEFINE_integer("batch_size", 20, "批量大小")
flags.DEFINE_integer("biscale_slow_layer_ticks", 8, "Biscale 慢层的刻度")
flags.DEFINE_boolean("multiscale", False, "多尺度 RNN")
flags.DEFINE_integer("pretraining_epochs", 6, "进行语言模型风格预训练的轮数")
flags.DEFINE_boolean("pretraining_d", False, "在预训练期间训练 D")
flags.DEFINE_boolean("initialize_d", False, "初始化 D 的变量,无论检查点中是否有已训练的版本")
flags.DEFINE_boolean("ignore_saved_args", False, "告诉程序忽略已保存的参数,而是使用命令行参数")
flags.DEFINE_boolean("pace_events", False, "在解析输入数据时,如果某个四分音符位置没有音符,则插入一个虚拟事件")
flags.DEFINE_boolean("minibatch_d", False, "为小批量增加核特征以提高多样性")
flags.DEFINE_boolean("unidirectional_d", False, "使用单向 RNN 而不是双向 RNN 作为 D")
flags.DEFINE_boolean("profiling", False, "性能分析。在 plots 目录中写入 timeline.json 文件")
flags.DEFINE_boolean("float16", False, "使用 float16 数据类型,否则,使用 float32")
flags.DEFINE_boolean("adam", False, "使用 Adam 优化器")
flags.DEFINE_boolean("feature_matching", False, "生成器 G 的特征匹配目标")
flags.DEFINE_boolean("disable_l2_regularizer", False, "对权重进行 L2 正则化")
flags.DEFINE_float("reg_scale", 1.0, "L2 正则化系数")
flags.DEFINE_boolean("synthetic_chords", False, "使用合成生成的和弦进行训练(每个事件三个音符)")
flags.DEFINE_integer("tones_per_cell", 1, "每个 RNN 单元输出的最大音符数量")
flags.DEFINE_string("composer", None, "指定一个作曲家,并仅在此作曲家的作品上训练模型")
flags.DEFINE_boolean("generate_meta", False, "将作曲家和流派作为输出的一部分生成")
flags.DEFINE_float("random_input_scale", 1.0, "随机输入的缩放比例(1表示与生成的特征大小相同)")
flags.DEFINE_boolean("end_classification", False, "仅在 D 的末尾进行分类。否则,在每个时间步进行分类并取平均值")
FLAGS = flags.FLAGS
model_layout_flags = ['num_layers_g', 'num_layers_d', 'meta_layer_size', 'hidden_size_g', 'hidden_size_d', 'biscale_slow_layer_ticks', 'multiscale', 'multiscale', 'disable_feed_previous', 'pace_events', 'minibatch_d', 'unidirectional_d', 'feature_matching', 'composer']
def make_rnn_cell(rnn_layer_sizes,
dropout_keep_prob=1.0,
attn_length=0,
base_cell=tf.contrib.rnn.BasicLSTMCell,
state_is_tuple=True,
reuse=False):
"""
根据给定的超参数创建一个RNN单元。
参数:
rnn_layer_sizes:一个整数列表,表示 RNN 每层的大小。
dropout_keep_prob:一个浮点数,表示保留任何给定子单元输出的概率。
attn_length:注意力向量的大小。
base_cell:用于子单元的基础 tf.contrib.rnn.RNNCell。
state_is_tuple:一个布尔值,指定是否使用隐藏矩阵和单元矩阵的元组作为状态,而不是拼接矩阵。
return:
一个基于给定超参数的 tf.contrib.rnn.MultiRNNCell。
"""
cells = []
for num_units in rnn_layer_sizes:
cell = base_cell(num_units, state_is_tuple=state_is_tuple, reuse=reuse)
cell = tf.contrib.rnn.DropoutWrapper(
cell, output_keep_prob=dropout_keep_prob)
cells.append(cell)
cell = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=state_is_tuple)
if attn_length:
cell = tf.contrib.rnn.AttentionCellWrapper(
cell, attn_length, state_is_tuple=state_is_tuple, reuse=reuse)
return cell
def restore_flags(save_if_none_found=True):
if FLAGS.traindir:
saved_args_dir = os.path.join(FLAGS.traindir, 'saved_args')
if save_if_none_found:
try: os.makedirs(saved_args_dir)
except: pass
for arg in FLAGS.__flags:
if arg not in model_layout_flags:
continue
if FLAGS.ignore_saved_args and os.path.exists(os.path.join(saved_args_dir, arg+'.pkl')):
print('{:%Y-%m-%d %H:%M:%S}: saved_args: Found {} setting from saved state, but using CLI args ({}) and saving (--ignore_saved_args).'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))
elif os.path.exists(os.path.join(saved_args_dir, arg+'.pkl')):
with open(os.path.join(saved_args_dir, arg+'.pkl'), 'rb') as f:
setattr(FLAGS, arg, pkl.load(f))
print('{:%Y-%m-%d %H:%M:%S}: saved_args: {} from saved state ({}), ignoring CLI args.'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))
elif save_if_none_found:
print('{:%Y-%m-%d %H:%M:%S}: saved_args: Found no {} setting from saved state, using CLI args ({}) and saving.'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))
with open(os.path.join(saved_args_dir, arg+'.pkl'), 'wb') as f:
print(getattr(FLAGS, arg),arg)
pkl.dump(getattr(FLAGS, arg), f)
else:
print('{:%Y-%m-%d %H:%M:%S}: saved_args: Found no {} setting from saved state, using CLI args ({}) but not saving.'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))
# 定义数据类型
def data_type():
return tf.float16 if FLAGS.float16 else tf.float32
#return tf.float16
def my_reduce_mean(what_to_take_mean_over):
return tf.reshape(what_to_take_mean_over, shape=[-1])[0]
denom = 1.0
#print(what_to_take_mean_over.get_shape())
for d in what_to_take_mean_over.get_shape():
#print(d)
if type(d) == tf.Dimension:
denom = denom*d.value
else:
denom = denom*d
return tf.reduce_sum(what_to_take_mean_over)/denom
def linear(inp, output_dim, scope=None, stddev=1.0, reuse_scope=False):
norm = tf.random_normal_initializer(stddev=stddev, dtype=data_type())
const = tf.constant_initializer(0.0, dtype=data_type())
with tf.variable_scope(scope or 'linear') as scope:
scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))
if reuse_scope:
scope.reuse_variables()
#print('inp.get_shape(): {}'.format(inp.get_shape()))
w = tf.get_variable('w', [inp.get_shape()[1], output_dim], initializer=norm, dtype=data_type())
b = tf.get_variable('b', [output_dim], initializer=const, dtype=data_type())
return tf.matmul(inp, w) + b
def minibatch(inp, num_kernels=25, kernel_dim=10, scope=None, msg='', reuse_scope=False):
with tf.variable_scope(scope or 'minibatch_d') as scope:
scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))
if reuse_scope:
scope.reuse_variables()
inp = tf.Print(inp, [inp],
'{} inp = '.format(msg), summarize=20, first_n=20)
x = tf.sigmoid(linear(inp, num_kernels * kernel_dim, scope))
activation = tf.reshape(x, (-1, num_kernels, kernel_dim))
activation = tf.Print(activation, [activation],
'{} activation = '.format(msg), summarize=20, first_n=20)
diffs = tf.expand_dims(activation, 3) - \
tf.expand_dims(tf.transpose(activation, [1, 2, 0]), 0)
diffs = tf.Print(diffs, [diffs],
'{} diffs = '.format(msg), summarize=20, first_n=20)
abs_diffs = tf.reduce_sum(tf.abs(diffs), 2)
abs_diffs = tf.Print(abs_diffs, [abs_diffs],
'{} abs_diffs = '.format(msg), summarize=20, first_n=20)
minibatch_features = tf.reduce_sum(tf.exp(-abs_diffs), 2)
minibatch_features = tf.Print(minibatch_features, [tf.reduce_min(minibatch_features), tf.reduce_max(minibatch_features)],
'{} minibatch_features (min,max) = '.format(msg), summarize=20, first_n=20)
return tf.concat( [inp, minibatch_features],1)
class RNNGAN(object):
"""定义RNN-GAN模型."""
def __init__(self, is_training, num_song_features=None, num_meta_features=None):
batch_size = FLAGS.batch_size
self.batch_size = batch_size
songlength = FLAGS.songlength
self.songlength = songlength#self.global_step= tf.Variable(0, trainable=False)
print('songlength: {}'.format(self.songlength))
self._input_songdata = tf.placeholder(shape=[batch_size, songlength, num_song_features], dtype=data_type())
self._input_metadata = tf.placeholder(shape=[batch_size, num_meta_features], dtype=data_type())
#_split = tf.split(self._input_songdata,songlength,1)[0]
print("self._input_songdata",self._input_songdata, 'songlength',songlength)
#print(tf.squeeze(_split,[1]))
songdata_inputs = [tf.squeeze(input_, [1])
for input_ in tf.split(self._input_songdata,songlength,1)]
with tf.variable_scope('G') as scope:
scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))
#lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(FLAGS.hidden_size_g, forget_bias=1.0, state_is_tuple=True)
if is_training and FLAGS.keep_prob < 1:
#lstm_cell = tf.nn.rnn_cell.DropoutWrapper(
# lstm_cell, output_keep_prob=FLAGS.keep_prob)
cell = make_rnn_cell([FLAGS.hidden_size_g]*FLAGS.num_layers_g,dropout_keep_prob=FLAGS.keep_prob)
else:
cell = make_rnn_cell([FLAGS.hidden_size_g]*FLAGS.num_layers_g)
#cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell for _ in range( FLAGS.num_layers_g)], state_is_tuple=True)
self._initial_state = cell.zero_state(batch_size, data_type())
# TODO: (possibly temporarily) disabling meta info
if FLAGS.generate_meta:
metainputs = tf.random_uniform(shape=[batch_size, int(FLAGS.random_input_scale*num_meta_features)], minval=0.0, maxval=1.0)
meta_g = tf.nn.relu(linear(metainputs, FLAGS.meta_layer_size, scope='meta_layer', reuse_scope=False))
meta_softmax_w = tf.get_variable("meta_softmax_w", [FLAGS.meta_layer_size, num_meta_features])
meta_softmax_b = tf.get_variable("meta_softmax_b", [num_meta_features])
meta_logits = tf.nn.xw_plus_b(meta_g, meta_softmax_w, meta_softmax_b)
meta_probs = tf.nn.softmax(meta_logits)
random_rnninputs = tf.random_uniform(shape=[batch_size, songlength, int(FLAGS.random_input_scale*num_song_features)], minval=0.0, maxval=1.0, dtype=data_type())
random_rnninputs = [tf.squeeze(input_, [1]) for input_ in tf.split( random_rnninputs,songlength,1)]
# REAL GENERATOR:
state = self._initial_state
# as we feed the output as the input to the next, we 'invent' the initial 'output'.
generated_point = tf.random_uniform(shape=[batch_size, num_song_features], minval=0.0, maxval=1.0, dtype=data_type())
outputs = []
self._generated_features = []
for i,input_ in enumerate(random_rnninputs):
if i > 0: scope.reuse_variables()
concat_values = [input_]
if not FLAGS.disable_feed_previous:
concat_values.append(generated_point)
if FLAGS.generate_meta:
concat_values.append(meta_probs)
if len(concat_values):
input_ = tf.concat(axis=1, values=concat_values)
input_ = tf.nn.relu(linear(input_, FLAGS.hidden_size_g,
scope='input_layer', reuse_scope=(i!=0)))
output, state = cell(input_, state)
outputs.append(output)
#generated_point = tf.nn.relu(linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0)))
generated_point = linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0))
self._generated_features.append(generated_point)
# PRETRAINING GENERATOR, will feed inputs, not generated outputs:
scope.reuse_variables()
# as we feed the output as the input to the next, we 'invent' the initial 'output'.
prev_target = tf.random_uniform(shape=[batch_size, num_song_features], minval=0.0, maxval=1.0, dtype=data_type())
outputs = []
self._generated_features_pretraining = []
for i,input_ in enumerate(random_rnninputs):
concat_values = [input_]
if not FLAGS.disable_feed_previous:
concat_values.append(prev_target)
if FLAGS.generate_meta:
concat_values.append(self._input_metadata)
if len(concat_values):
input_ = tf.concat(axis=1, values=concat_values)
input_ = tf.nn.relu(linear(input_, FLAGS.hidden_size_g, scope='input_layer', reuse_scope=(i!=0)))
output, state = cell(input_, state)
outputs.append(output)
#generated_point = tf.nn.relu(linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0)))
generated_point = linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0))
self._generated_features_pretraining.append(generated_point)
prev_target = songdata_inputs[i]
#outputs, state = tf.nn.rnn(cell, transformed, initial_state=self._initial_state)
#self._generated_features = [tf.nn.relu(linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0))) for i,output in enumerate(outputs)]
self._final_state = state
# These are used both for pretraining and for D/G training further down.
self._lr = tf.Variable(FLAGS.learning_rate, trainable=False, dtype=data_type())
self.g_params = [v for v in tf.trainable_variables() if v.name.startswith('model/G/')]
if FLAGS.adam:
g_optimizer = tf.train.AdamOptimizer(self._lr)
else:
g_optimizer = tf.train.GradientDescentOptimizer(self._lr)
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_constant = 0.1 # Choose an appropriate one.
reg_loss = reg_constant * sum(reg_losses)
reg_loss = tf.Print(reg_loss, reg_losses,
'reg_losses = ', summarize=20, first_n=20)
# 预训练
print(tf.transpose(tf.stack(self._generated_features_pretraining), perm=[1, 0, 2]).get_shape())
print(self._input_songdata.get_shape())
self.rnn_pretraining_loss = tf.reduce_mean(tf.squared_difference(x=tf.transpose(tf.stack(self._generated_features_pretraining), perm=[1, 0, 2]), y=self._input_songdata))
if not FLAGS.disable_l2_regularizer:
self.rnn_pretraining_loss = self.rnn_pretraining_loss+reg_loss
pretraining_grads, _ = tf.clip_by_global_norm(tf.gradients(self.rnn_pretraining_loss, self.g_params), FLAGS.max_grad_norm)
self.opt_pretraining = g_optimizer.apply_gradients(zip(pretraining_grads, self.g_params))
# The discriminator tries to tell the difference between samples from the
# true data distribution (self.x) and the generated samples (self.z).
#
# Here we create two copies of the discriminator network (that share parameters),
# as you cannot use the same network with different inputs in TensorFlow.
with tf.variable_scope('D') as scope:
scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))
# Make list of tensors. One per step in recurrence.
# Each tensor is batchsize*numfeatures.
# TODO: (possibly temporarily) disabling meta info
print('self._input_songdata shape {}'.format(self._input_songdata.get_shape()))
print('generated data shape {}'.format(self._generated_features[0].get_shape()))
# TODO: (possibly temporarily) disabling meta info
if FLAGS.generate_meta:
songdata_inputs = [tf.concat([self._input_metadata, songdata_input],1) for songdata_input in songdata_inputs]
#print(songdata_inputs[0])
#print(songdata_inputs[0])
#print('metadata inputs shape {}'(self._input_metadata.get_shape()))
#print('generated metadata shape {}'.format(meta_probs.get_shape()))
self.real_d,self.real_d_features = self.discriminator(songdata_inputs, is_training, msg='real')
scope.reuse_variables()
# TODO: (possibly temporarily) disabling meta info
if FLAGS.generate_meta:
generated_data = [tf.concat([meta_probs, songdata_input],1) for songdata_input in self._generated_features]
else:
generated_data = self._generated_features
if songdata_inputs[0].get_shape() != generated_data[0].get_shape():
print('songdata_inputs shape {} != generated data shape {}'.format(songdata_inputs[0].get_shape(), generated_data[0].get_shape()))
self.generated_d,self.generated_d_features = self.discriminator(generated_data, is_training, msg='generated')
# Define the loss for discriminator and generator networks (see the original
# paper for details), and create optimizers for both
self.d_loss = tf.reduce_mean(-tf.log(tf.clip_by_value(self.real_d, 1e-1000000, 1.0)) \
-tf.log(1 - tf.clip_by_value(self.generated_d, 0.0, 1.0-1e-1000000)))
self.g_loss_feature_matching = tf.reduce_sum(tf.squared_difference(self.real_d_features, self.generated_d_features))
self.g_loss = tf.reduce_mean(-tf.log(tf.clip_by_value(self.generated_d, 1e-1000000, 1.0)))
if not FLAGS.disable_l2_regularizer:
self.d_loss = self.d_loss+reg_loss
self.g_loss_feature_matching = self.g_loss_feature_matching+reg_loss
self.g_loss = self.g_loss+reg_loss
self.d_params = [v for v in tf.trainable_variables() if v.name.startswith('model/D/')]
if not is_training:
return
d_optimizer = tf.train.GradientDescentOptimizer(self._lr*FLAGS.d_lr_factor)
d_grads, _ = tf.clip_by_global_norm(tf.gradients(self.d_loss, self.d_params),
FLAGS.max_grad_norm)
self.opt_d = d_optimizer.apply_gradients(zip(d_grads, self.d_params))
if FLAGS.feature_matching:
g_grads, _ = tf.clip_by_global_norm(tf.gradients(self.g_loss_feature_matching,
self.g_params),
FLAGS.max_grad_norm)
else:
g_grads, _ = tf.clip_by_global_norm(tf.gradients(self.g_loss, self.g_params),
FLAGS.max_grad_norm)
self.opt_g = g_optimizer.apply_gradients(zip(g_grads, self.g_params))
self._new_lr = tf.placeholder(shape=[], name="new_learning_rate", dtype=data_type())
self._lr_update = tf.assign(self._lr, self._new_lr)
def discriminator(self, inputs, is_training, msg=''):
# RNN discriminator:
#for i in xrange(len(inputs)):
# print('shape inputs[{}] {}'.format(i, inputs[i].get_shape()))
#inputs[0] = tf.Print(inputs[0], [inputs[0]],
# '{} inputs[0] = '.format(msg), summarize=20, first_n=20)
if is_training and FLAGS.keep_prob < 1:
inputs = [tf.nn.dropout(input_, FLAGS.keep_prob) for input_ in inputs]
#lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(FLAGS.hidden_size_d, forget_bias=1.0, state_is_tuple=True)
if is_training and FLAGS.keep_prob < 1:
#lstm_cell = tf.nn.rnn_cell.DropoutWrapper(
#lstm_cell, output_keep_prob=FLAGS.keep_prob)
cell_fw = make_rnn_cell([FLAGS.hidden_size_d]* FLAGS.num_layers_d,dropout_keep_prob=FLAGS.keep_prob)
cell_bw = make_rnn_cell([FLAGS.hidden_size_d]* FLAGS.num_layers_d,dropout_keep_prob=FLAGS.keep_prob)
else:
cell_fw = make_rnn_cell([FLAGS.hidden_size_d]* FLAGS.num_layers_d)
cell_bw = make_rnn_cell([FLAGS.hidden_size_d]* FLAGS.num_layers_d)
#cell_fw = tf.nn.rnn_cell.MultiRNNCell([lstm_cell for _ in range( FLAGS.num_layers_d)], state_is_tuple=True)
self._initial_state_fw = cell_fw.zero_state(self.batch_size, data_type())
if not FLAGS.unidirectional_d:
#lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(FLAGS.hidden_size_g, forget_bias=1.0, state_is_tuple=True)
#if is_training and FLAGS.keep_prob < 1:
# lstm_cell = tf.nn.rnn_cell.DropoutWrapper(
# lstm_cell, output_keep_prob=FLAGS.keep_prob)
#cell_bw = tf.nn.rnn_cell.MultiRNNCell([lstm_cell for _ in range( FLAGS.num_layers_d)], state_is_tuple=True)
self._initial_state_bw = cell_bw.zero_state(self.batch_size, data_type())
print("cell_fw",cell_fw.output_size)
#print("cell_bw",cell_bw.output_size)
#print("inputs",inputs)
#print("initial_state_fw",self._initial_state_fw)
#print("initial_state_bw",self._initial_state_bw)
outputs, state_fw, state_bw = tf.contrib.rnn.static_bidirectional_rnn(cell_fw, cell_bw, inputs, initial_state_fw=self._initial_state_fw, initial_state_bw=self._initial_state_bw)
#outputs[0] = tf.Print(outputs[0], [outputs[0]],
# '{} outputs[0] = '.format(msg), summarize=20, first_n=20)
#state = tf.concat(state_fw, state_bw)
#endoutput = tf.concat(concat_dim=1, values=[outputs[0],outputs[-1]])
else:
outputs, state = tf.nn.rnn(cell_fw, inputs, initial_state=self._initial_state_fw)
#state = self._initial_state
#outputs, state = cell_fw(tf.convert_to_tensor (inputs),state)
#endoutput = outputs[-1]
if FLAGS.minibatch_d:
outputs = [minibatch(tf.reshape(outp, shape=[FLAGS.batch_size, -1]), msg=msg, reuse_scope=(i!=0)) for i,outp in enumerate(outputs)]
# decision = tf.sigmoid(linear(outputs[-1], 1, 'decision'))
if FLAGS.end_classification:
decisions = [tf.sigmoid(linear(output, 1, 'decision', reuse_scope=(i!=0))) for i,output in enumerate([outputs[0], outputs[-1]])]
decisions = tf.stack(decisions)
decisions = tf.transpose(decisions, perm=[1,0,2])
print('shape, decisions: {}'.format(decisions.get_shape()))
else:
decisions = [tf.sigmoid(linear(output, 1, 'decision', reuse_scope=(i!=0))) for i,output in enumerate(outputs)]
decisions = tf.stack(decisions)
decisions = tf.transpose(decisions, perm=[1,0,2])
print('shape, decisions: {}'.format(decisions.get_shape()))
decision = tf.reduce_mean(decisions, reduction_indices=[1,2])
decision = tf.Print(decision, [decision],
'{} decision = '.format(msg), summarize=20, first_n=20)
return (decision,tf.transpose(tf.stack(outputs), perm=[1,0,2]))
def assign_lr(self, session, lr_value):
session.run(self._lr_update, feed_dict={self._new_lr: lr_value})
@property
def generated_features(self):
return self._generated_features
@property
def input_songdata(self):
return self._input_songdata
@property
def input_metadata(self):
return self._input_metadata
@property
def targets(self):
return self._targets
@property
def initial_state(self):
return self._initial_state
@property
def cost(self):
return self._cost
@property
def final_state(self):
return self._final_state
@property
def lr(self):
return self._lr
@property
def train_op(self):
return self._train_op
def run_epoch(session, model, loader, datasetlabel, eval_op_g, eval_op_d, pretraining=False, verbose=False, run_metadata=None, pretraining_d=False):
"""Runs the model on the given data."""
#epoch_size = ((len(data) // model.batch_size) - 1) // model.songlength
epoch_start_time = time.time()
g_loss, d_loss = 10.0, 10.0
g_losses, d_losses = 0.0, 0.0
iters = 0
#state = session.run(model.initial_state)
time_before_graph = None
time_after_graph = None
times_in_graph = []
times_in_python = []
#times_in_batchreading = []
loader.rewind(part=datasetlabel)
[batch_meta, batch_song] = loader.get_batch(model.batch_size, model.songlength, part=datasetlabel)
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
while batch_meta is not None and batch_song is not None:
op_g = eval_op_g
op_d = eval_op_d
if datasetlabel == 'train' and not pretraining: # and not FLAGS.feature_matching:
if d_loss == 0.0 and g_loss == 0.0:
print('Both G and D train loss are zero. Exiting.')
break
#saver.save(session, checkpoint_path, global_step=m.global_step)
#break
elif d_loss == 0.0:
#print('D train loss is zero. Freezing optimization. G loss: {:.3f}'.format(g_loss))
op_g = tf.no_op()
elif g_loss == 0.0:
#print('G train loss is zero. Freezing optimization. D loss: {:.3f}'.format(d_loss))
op_d = tf.no_op()
elif g_loss < 2.0 or d_loss < 2.0:
if g_loss*.7 > d_loss:
#print('G train loss is {:.3f}, D train loss is {:.3f}. Freezing optimization of D'.format(g_loss, d_loss))
op_g = tf.no_op()
#elif d_loss*.7 > g_loss:
#print('G train loss is {:.3f}, D train loss is {:.3f}. Freezing optimization of G'.format(g_loss, d_loss))
op_d = tf.no_op()
#fetches = [model.cost, model.final_state, eval_op]
if pretraining:
if pretraining_d:
fetches = [model.rnn_pretraining_loss, model.d_loss, op_g, op_d]
else:
fetches = [model.rnn_pretraining_loss, tf.no_op(), op_g, op_d]
else:
fetches = [model.g_loss, model.d_loss, op_g, op_d]
feed_dict = {}
feed_dict[model.input_songdata.name] = batch_song
feed_dict[model.input_metadata.name] = batch_meta
#print(batch_song)
#print(batch_song.shape)
#for i, (c, h) in enumerate(model.initial_state):
# feed_dict[c] = state[i].c
# feed_dict[h] = state[i].h
#cost, state, _ = session.run(fetches, feed_dict)
time_before_graph = time.time()
if iters > 0:
times_in_python.append(time_before_graph-time_after_graph)
if run_metadata:
g_loss, d_loss, _, _ = session.run(fetches, feed_dict, options=run_options, run_metadata=run_metadata)
else:
g_loss, d_loss, _, _ = session.run(fetches, feed_dict)
time_after_graph = time.time()
if iters > 0:
times_in_graph.append(time_after_graph-time_before_graph)
g_losses += g_loss
if not pretraining:
d_losses += d_loss
iters += 1
if verbose and iters % 10 == 9:
songs_per_sec = float(iters * model.batch_size)/float(time.time() - epoch_start_time)
avg_time_in_graph = float(sum(times_in_graph))/float(len(times_in_graph))
avg_time_in_python = float(sum(times_in_python))/float(len(times_in_python))
#avg_time_batchreading = float(sum(times_in_batchreading))/float(len(times_in_batchreading))
if pretraining:
print("{}: {} (pretraining) batch loss: G: {:.3f}, avg loss: G: {:.3f}, speed: {:.1f} songs/s, avg in graph: {:.1f}, avg in python: {:.1f}.".format(datasetlabel, iters, g_loss, float(g_losses)/float(iters), songs_per_sec, avg_time_in_graph, avg_time_in_python))
else:
print("{}: {} batch loss: G: {:.3f}, D: {:.3f}, avg loss: G: {:.3f}, D: {:.3f} speed: {:.1f} songs/s, avg in graph: {:.1f}, avg in python: {:.1f}.".format(datasetlabel, iters, g_loss, d_loss, float(g_losses)/float(iters), float(d_losses)/float(iters),songs_per_sec, avg_time_in_graph, avg_time_in_python))
#batchtime = time.time()
[batch_meta, batch_song] = loader.get_batch(model.batch_size, model.songlength, part=datasetlabel)
#times_in_batchreading.append(time.time()-batchtime)
if iters == 0:
return (None,None)
g_mean_loss = g_losses/iters
if pretraining and not pretraining_d:
d_mean_loss = None
else:
d_mean_loss = d_losses/iters
return (g_mean_loss, d_mean_loss)
def sample(session, model, batch=False):
"""Samples from the generative model."""
#state = session.run(model.initial_state)
fetches = [model.generated_features]
feed_dict = {}
generated_features, = session.run(fetches, feed_dict)
#print( generated_features)
print( generated_features[0].shape)
# The following worked when batch_size=1.
# generated_features = [np.squeeze(x, axis=0) for x in generated_features]
# If batch_size != 1, we just pick the first sample. Wastefull, yes.
returnable = []
if batch:
for batchno in range(generated_features[0].shape[0]):
returnable.append([x[batchno,:] for x in generated_features])
else:
returnable = [x[0,:] for x in generated_features]
return returnable
def main(_):
if not FLAGS.datadir:
raise ValueError("Must set --datadir to midi music dir.")
if not FLAGS.traindir:
raise ValueError("Must set --traindir to dir where I can save model and plots.")
restore_flags()
summaries_dir = None
plots_dir = None
generated_data_dir = None
summaries_dir = os.path.join(FLAGS.traindir, 'summaries')
plots_dir = os.path.join(FLAGS.traindir, 'plots')
generated_data_dir = os.path.join(FLAGS.traindir, 'generated_data')
try: os.makedirs(FLAGS.traindir)
except: pass
try: os.makedirs(summaries_dir)
except: pass
try: os.makedirs(plots_dir)
except: pass
try: os.makedirs(generated_data_dir)
except: pass
directorynames = FLAGS.traindir.split('/')
experiment_label = ''
while not experiment_label:
experiment_label = directorynames.pop()
global_step = -1
if os.path.exists(os.path.join(FLAGS.traindir, 'global_step.pkl')):
with open(os.path.join(FLAGS.traindir, 'global_step.pkl'), 'r') as f:
global_step = pkl.load(f)
global_step += 1
songfeatures_filename = os.path.join(FLAGS.traindir, 'num_song_features.pkl')
metafeatures_filename = os.path.join(FLAGS.traindir, 'num_meta_features.pkl')
synthetic=None
if FLAGS.synthetic_chords:
synthetic = 'chords'
print('Training on synthetic chords!')
if FLAGS.composer is not None:
print('Single composer: {}'.format(FLAGS.composer))
loader = music_data_utils.MusicDataLoader(FLAGS.datadir, FLAGS.select_validation_percentage, FLAGS.select_test_percentage, FLAGS.works_per_composer, FLAGS.pace_events, synthetic=synthetic, tones_per_cell=FLAGS.tones_per_cell, single_composer=FLAGS.composer)
if FLAGS.synthetic_chords:
# This is just a print out, to check the generated data.
batch = loader.get_batch(batchsize=1, songlength=400)
loader.get_midi_pattern([batch[1][0][i] for i in xrange(batch[1].shape[1])])
num_song_features = loader.get_num_song_features()
print('num_song_features:{}'.format(num_song_features))
num_meta_features = loader.get_num_meta_features()
print('num_meta_features:{}'.format(num_meta_features))
train_start_time = time.time()
checkpoint_path = os.path.join(FLAGS.traindir, "model.ckpt")
songlength_ceiling = FLAGS.songlength
if global_step < FLAGS.pretraining_epochs:
FLAGS.songlength = int(min(((global_step+10)/10)*10,songlength_ceiling))
FLAGS.songlength = int(min((global_step+1)*4,songlength_ceiling))
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)) as session:
with tf.variable_scope("model", reuse=None) as scope:
scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))
m = RNNGAN(is_training=True, num_song_features=num_song_features, num_meta_features=num_meta_features)
if FLAGS.initialize_d:
vars_to_restore = {}
for v in tf.trainable_variables():
if v.name.startswith('model/G/'):
print(v.name[:-2])
vars_to_restore[v.name[:-2]] = v
saver = tf.train.Saver(vars_to_restore)
ckpt = tf.train.get_checkpoint_state(FLAGS.traindir)
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path,end=" ")
saver.restore(session, ckpt.model_checkpoint_path)
session.run(tf.initialize_variables([v for v in tf.trainable_variables() if v.name.startswith('model/D/')]))
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
saver = tf.train.Saver(tf.all_variables())
else:
saver = tf.train.Saver(tf.all_variables())
ckpt = tf.train.get_checkpoint_state(FLAGS.traindir)
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
run_metadata = None
if FLAGS.profiling:
run_metadata = tf.RunMetadata()
if not FLAGS.sample:
train_g_loss,train_d_loss = 1.0,1.0
for i in range(global_step, FLAGS.max_epoch):
lr_decay = FLAGS.lr_decay ** max(i - FLAGS.epochs_before_decay, 0.0)
if global_step < FLAGS.pretraining_epochs:
#new_songlength = int(min(((i+10)/10)*10,songlength_ceiling))
new_songlength = int(min((i+1)*4,songlength_ceiling))
else:
new_songlength = songlength_ceiling
if new_songlength != FLAGS.songlength:
print('Changing songlength, now training on {} events from songs.'.format(new_songlength))
FLAGS.songlength = new_songlength
with tf.variable_scope("model", reuse=True) as scope:
scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))
m = RNNGAN(is_training=True, num_song_features=num_song_features, num_meta_features=num_meta_features)
if not FLAGS.adam:
m.assign_lr(session, FLAGS.learning_rate * lr_decay)
save = False
do_exit = False
print("Epoch: {} Learning rate: {:.3f}, pretraining: {}".format(i, session.run(m.lr), (i<FLAGS.pretraining_epochs)))
if i<FLAGS.pretraining_epochs:
opt_d = tf.no_op()
if FLAGS.pretraining_d:
opt_d = m.opt_d
train_g_loss,train_d_loss = run_epoch(session, m, loader, 'train', m.opt_pretraining, opt_d, pretraining = True, verbose=True, run_metadata=run_metadata, pretraining_d=FLAGS.pretraining_d)
if FLAGS.pretraining_d:
try:
print("Epoch: {} Pretraining loss: G: {:.3f}, D: {:.3f}".format(i, train_g_loss, train_d_loss))
except:
print(train_g_loss)
print(train_d_loss)
else:
print("Epoch: {} Pretraining loss: G: {:.3f}".format(i, train_g_loss))
else:
train_g_loss,train_d_loss = run_epoch(session, m, loader, 'train', m.opt_d, m.opt_g, verbose=True, run_metadata=run_metadata)
try:
print("Epoch: {} Train loss: G: {:.3f}, D: {:.3f}".format(i, train_g_loss, train_d_loss))
except:
print("Epoch: {} Train loss: G: {}, D: {}".format(i, train_g_loss, train_d_loss))
valid_g_loss,valid_d_loss = run_epoch(session, m, loader, 'validation', tf.no_op(), tf.no_op())
try:
print("Epoch: {} Valid loss: G: {:.3f}, D: {:.3f}".format(i, valid_g_loss, valid_d_loss))
except:
print("Epoch: {} Valid loss: G: {}, D: {}".format(i, valid_g_loss, valid_d_loss))
if train_d_loss == 0.0 and train_g_loss == 0.0:
print('Both G and D train loss are zero. Exiting.')
save = True
do_exit = True
if i % FLAGS.epochs_per_checkpoint == 0:
save = True
if FLAGS.exit_after > 0 and time.time() - train_start_time > FLAGS.exit_after*60:
print("%s: Has been running for %d seconds. Will exit (exiting after %d minutes)."%(datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), (int)(time.time() - train_start_time), FLAGS.exit_after))
save = True
do_exit = True
if save:
saver.save(session, checkpoint_path, global_step=i)
with open(os.path.join(FLAGS.traindir, 'global_step.pkl'), 'wb') as f:
pkl.dump(i, f)
if FLAGS.profiling:
# Create the Timeline object, and write it to a json
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open(os.path.join(plots_dir, 'timeline.json'), 'w') as f:
f.write(ctf)
print('{}: Saving done!'.format(i))
step_time, loss = 0.0, 0.0
if train_d_loss is None: #pretraining
train_d_loss = 0.0
valid_d_loss = 0.0
valid_g_loss = 0.0
if not os.path.exists(os.path.join(plots_dir, 'gnuplot-input.txt')):
with open(os.path.join(plots_dir, 'gnuplot-input.txt'), 'w') as f:
f.write('# global-step learning-rate train-g-loss train-d-loss valid-g-loss valid-d-loss\n')
with open(os.path.join(plots_dir, 'gnuplot-input.txt'), 'a') as f:
try:
f.write('{} {:.4f} {:.2f} {:.2f} {:.3} {:.3f}\n'.format(i, m.lr.eval(), train_g_loss, train_d_loss, valid_g_loss, valid_d_loss))
except:
f.write('{} {} {} {} {} {}\n'.format(i, m.lr.eval(), train_g_loss, train_d_loss, valid_g_loss, valid_d_loss))
if not os.path.exists(os.path.join(plots_dir, 'gnuplot-commands-loss.txt')):
with open(os.path.join(plots_dir, 'gnuplot-commands-loss.txt'), 'a') as f:
f.write('set terminal postscript eps color butt "Times" 14\nset yrange [0:400]\nset output "loss.eps"\nplot \'gnuplot-input.txt\' using ($1):($3) title \'train G\' with linespoints, \'gnuplot-input.txt\' using ($1):($4) title \'train D\' with linespoints, \'gnuplot-input.txt\' using ($1):($5) title \'valid G\' with linespoints, \'gnuplot-input.txt\' using ($1):($6) title \'valid D\' with linespoints, \n')
if not os.path.exists(os.path.join(plots_dir, 'gnuplot-commands-midistats.txt')):
with open(os.path.join(plots_dir, 'gnuplot-commands-midistats.txt'), 'a') as f:
f.write('set terminal postscript eps color butt "Times" 14\nset yrange [0:127]\nset xrange [0:70]\nset output "midistats.eps"\nplot \'midi_stats.gnuplot\' using ($1):(100*$3) title \'Scale consistency, %\' with linespoints, \'midi_stats.gnuplot\' using ($1):($6) title \'Tone span, halftones\' with linespoints, \'midi_stats.gnuplot\' using ($1):($10) title \'Unique tones\' with linespoints, \'midi_stats.gnuplot\' using ($1):($23) title \'Intensity span, units\' with linespoints, \'midi_stats.gnuplot\' using ($1):(100*$24) title \'Polyphony, %\' with linespoints, \'midi_stats.gnuplot\' using ($1):($12) title \'3-tone repetitions\' with linespoints\n')
try:
Popen(['gnuplot','gnuplot-commands-loss.txt'], cwd=plots_dir)
Popen(['gnuplot','gnuplot-commands-midistats.txt'], cwd=plots_dir)
except:
print('failed to run gnuplot. Please do so yourself: gnuplot gnuplot-commands.txt cwd={}'.format(plots_dir))
song_data = sample(session, m, batch=True)
midi_patterns = []
print('formatting midi...')
midi_time = time.time()
for d in song_data:
midi_patterns.append(loader.get_midi_pattern(d))
print('done. time: {}'.format(time.time()-midi_time))
filename = os.path.join(generated_data_dir, 'out-{}-{}-{}.mid'.format(experiment_label, i, datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S')))
loader.save_midi_pattern(filename, midi_patterns[0])
stats = []
print('getting stats...')
stats_time = time.time()
for p in midi_patterns:
stats.append(get_all_stats(p))
print('done. time: {}'.format(time.time()-stats_time))
#print(stats)
stats = [stat for stat in stats if stat is not None]
if len(stats):
stats_keys_string = ['scale']
stats_keys = ['scale_score', 'tone_min', 'tone_max', 'tone_span', 'freq_min', 'freq_max', 'freq_span', 'tones_unique', 'repetitions_2', 'repetitions_3', 'repetitions_4', 'repetitions_5', 'repetitions_6', 'repetitions_7', 'repetitions_8', 'repetitions_9', 'estimated_beat', 'estimated_beat_avg_ticks_off', 'intensity_min', 'intensity_max', 'intensity_span', 'polyphony_score', 'top_2_interval_difference', 'top_3_interval_difference', 'num_tones']
statsfilename = os.path.join(plots_dir, 'midi_stats.gnuplot')
if not os.path.exists(statsfilename):
with open(statsfilename, 'a') as f:
f.write('# Average numers over one minibatch of size {}.\n'.format(FLAGS.batch_size))
f.write('# global-step {} {}\n'.format(' '.join([s.replace(' ', '_') for s in stats_keys_string]), ' '.join(stats_keys)))
with open(statsfilename, 'a') as f:
f.write('{} {} {}\n'.format(i, ' '.join(['{}'.format(stats[0][key].replace(' ', '_')) for key in stats_keys_string]), ' '.join(['{:.3f}'.format(sum([s[key] for s in stats])/float(len(stats))) for key in stats_keys])))
print('Saved {}.'.format(filename))
if do_exit:
if FLAGS.call_after is not None:
print("%s: Will call \"%s\" before exiting."%(datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), FLAGS.call_after))
res = call(FLAGS.call_after.split(" "))
print ('{}: call returned {}.'.format(datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), res))
exit()
sys.stdout.flush()
test_g_loss,test_d_loss = run_epoch(session, m, loader, 'test', tf.no_op(), tf.no_op())
print("Test loss G: %.3f, D: %.3f" %(test_g_loss, test_d_loss))
song_data = sample(session, m)
filename = os.path.join(generated_data_dir, 'out-{}-{}-{}.mid'.format(experiment_label, i, datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S')))
loader.save_data(filename, song_data)
print('Saved {}.'.format(filename))
if __name__ == "__main__":
tf.app.run()
结论
作者提出了一种基于生成对抗网络训练的连续数据循环神经网络C-RNN-GAN。实验结果表明对抗训练有助于模型学习更多变的模式。虽然生成音乐与训练数据中的音乐相比仍有差距,但C-RNN-GAN生成音乐更接近真实音乐。
缺点以及后续展望
模型虽能生成音乐,但与人类判断的音乐仍有差距,后续可深入探究生成音乐与真实音乐存在差距的原因。作者提出可以进一步优化模型结构,提高生成音乐的质量。此外,还可研究该模型在其他类型连续序列数据中的应用。
总结
本周我阅读了一篇关于GAN生成序列数据的论文,为下一次阅读TimeGAN论文打作铺垫。通过阅读这篇论文,我了解到C-RNN-GAN模型如何利用对抗训练来生成连续序列数据,其中,生成器(G)包含LSTM层和全连接层;判别器(D)由Bi-LSTM(双向长短期记忆网络)组成。即 D双向的,G是单向的。同时,作者也通过实验证明了C-RNN-GAN的优势,虽然模型在序列数据生成方面有一定的效果,但仍存在一些不足之处,如生成序列数据与真实序列数据之间任然存在差距、模型结构尚可优化、应用到其他场景等等。作者提出的这些不足与展望为我后续研究数据增强方向提供了参考和思路。