【DGL系列】dgl中为graph指定CSR/COO/CSC矩阵格式

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~

只讲几个注意事项:

1、graph.formats() 函数可以查看graph格式,也可以指定graph格式。

g = dgl.graph(([0, 0, 1], [2, 3, 2]))
g.ndata['h'] = torch.ones(4, 1)

# 查看格式
g.formats()
# => {'created': ['coo'], 'not created': ['csr', 'csc']}

# 指定一种格式
csr_g = g.formats('csr')
csr_g.formats()
# => {'created': ['csr'], 'not created': []}

# 指定多种格式
new_g = g.formats(['coo', 'csr'])
new_g .formats()
# => {'created': ['coo', 'csr'], 'not created': []}

2、在调用 formats(['coo', 'csr']) 时,如果当前图的格式与指定格式没有交集,DGL 会按照 coo -> csr -> csc 的顺序选择一种格式创建。因此,如果图在反序列化后没有 CSR 格式,调用 formats(['coo', 'csr']) 可能只会创建 COO 格式。

g = dgl.graph(([0, 0, 1], [2, 3, 2]))
g.ndata['h'] = torch.ones(4, 1)

# 假设只有一种格式
g.formats()
# => {'created': ['coo'], 'not created': ['csc']}

# 交集没有csr,就不会设置成功
new_g = g.formats(['coo', 'csr'])
new_g .formats()
# => {'created': ['coo'], 'not created': []}

3、上述第2点,虽然没有指定格式,但是可以通过graph.create_formats_来显式创建。

g = dgl.graph(([0, 0, 1], [2, 3, 2]))
g.ndata['h'] = torch.ones(4, 1)

# 假设只有一种coo格式
g.formats()
# => {'created': ['coo'], 'not created': ['csc']}

# 交集没有csr,就不会设置成功
new_g = g.formats(['coo', 'csr'])
new_g .formats()
# => {'created': ['coo'], 'not created': ['csr']}

# 显式创建格式
new_g.create_formats_()
print(new_g.formats())
# => {'created': ['coo', 'csr'], 'not created': []}

4、使用 pickle 对 DGL 图对象进行序列化和反序列化后,图的存储格式可能会丢失或被重置为 COO 格式。

import dgl
import pickle

# 创建一个图并设置多种格式
g = dgl.graph(([0, 1, 2], [1, 2, 3]))
g = g.formats(['coo', 'csr', 'csc'])

# 使用 pickle 保存
with open('graph.pkl', 'wb') as f:
    pickle.dump(g, f)

# 使用 pickle 加载
with open('graph.pkl', 'rb') as f:
    loaded_g = pickle.load(f)

# 检查加载后的格式
print(loaded_g.formats())  # 可能会丢失某些格式

5、可以考虑使用 DGL 提供的保存dgl.save_graphs和加载dgl.load_graphs方法,这些方法能够更好地处理图的内部状态,包括稀疏格式。

# 保存图
dgl.save_graphs("graph.bin", [graph])

# 加载图
loaded_graphs, _ = dgl.load_graphs("graph.bin")
graph = loaded_graphs[0]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/958438.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

K8S 启动探测、就绪探测、存活探测

先来思考一个问题: 在 Deployment 执行滚动更新 web 应用的时候,总会出现一段时间,Pod 对外提供网络访问,但是页面访问却发生404,这个问题要如何解决呢?学完今天的内容,相信你会有自己的答案。 …

如何使用CRM数据分析优化销售和客户关系?

嘿,大家好!你有没有想过为什么有些公司在市场上如鱼得水,而另一些却在苦苦挣扎?答案可能就藏在他们的销售策略和客户关系管理(CRM)系统里。今天我们要聊的就是如何通过有效的 CRM 数据分析来提升你的销售额…

语音转文字的先驱-认识Buzz的前世今生

Buzz 是一款基于 OpenAI Whisper 模型开发的开源语音转文字工具,其历史可以追溯到 Whisper 模型的推出,并在之后逐渐发展为一个功能强大且广泛使用的工具。以下是关于 Buzz 的详细历史介绍: 1. Whisper 模型的背景 Buzz 的核心是 OpenAI 开…

宝塔Linux+docker部署nginx出现403 Forbidden

本文主要讲述了宝塔docker部署nginx出现403 Forbidden的原因,以及成功部署前端的方法步骤。 目录 1、问题描述2、问题检测2.1 检测监听端口是否异常2.2 检测Docker容器是否异常2.2.1 打开宝塔Linux的软件商店,找到Docker管理器,查看前端容器是…

LabVIEW项目中的工控机与普通电脑选择

工控机(Industrial PC)与普通电脑在硬件设计、性能要求、稳定性、环境适应性等方面存在显著差异。了解这些区别对于在LabVIEW项目中选择合适的硬件至关重要。下面将详细分析这两种设备的主要差异,并为LabVIEW项目中的选择提供指导。 ​ 硬件设…

QT6 + CMAKE编译OPENCV3.9

参考文档 [1] https://blog.csdn.net/rjkf_css/article/details/135676077 前提条件 配置好相关运行环境:QT6、OPENCV3.9的sources文件 OPENCV下载网页:https://opencv.org/releases/ QT6下载教程:https://blog.csdn.net/caoshangpa/article…

消息队列篇--基础篇(消息队列特点,应用场景、点对点和发布订阅工作模式,RabbmitMQ和Kafka代码示例等)

1、消息队列的介绍 消息(Message)是指在应用之间传送的数据,消息可以非常简单,比如只包含文本字符串,也可以更复杂,可能包含嵌入对象。 消息队列(Message Queue,简称MQ&#xff09…

状态模式——C++实现

目录 1. 状态模式简介 2. 代码示例 3. 单例状态对象 4. 状态模式与策略模式的辨析 1. 状态模式简介 状态模式是一种行为型模式。 状态模式的定义:状态模式允许对象在内部状态改变时改变它的行为,对象看起来好像修改了它的类。 通俗的说就是一个对象…

GESP202309 三级【进制判断】题解(AC)

》》》点我查看「视频」详解》》》 [GESP202309 三级] 进制判断 题目描述 N N N 进制数指的是逢 N N N 进一的计数制。例如,人们日常生活中大多使用十进制计数,而计算机底层则一般使用二进制。除此之外,八进制和十六进制在一些场合也是常用…

汽车敏捷开发:项目经理如何精准跟进项目流程

在敏捷开发环境中,项目经理身兼协调者、推动者、决策者等关键角色。 作为协调者,需在团队及部门间搭建沟通桥梁,确保信息流畅。 作为推动者,面对迭代中的技术难题、资源短缺等阻碍,要主动寻找解决方案,为…

数据从前端传到后端入库过程分析

数据从前端传到后端入库过程分析 概述 积累了一些项目经验,成长为一个老程序员了,自认为对各种业务和技术都能得心应手的应对了,殊不知很多时候我们借助了搜索引擎的能力,当然现在大家都是通过AI来武装自己。 今天要分析的话题是…

Netty 实战

Netty实践 1 Netty 版本选择2 Netty 模版代码2.1 Server2.2 Client 3 组件3.1 EventLoop、EventLoopGroup3.1.1 EventLoop3.1.2 EventLoopGroup 3.2 Channel3.2.1 ChannelFuture3.2.2 CloseFuture 3.3 ChannelHandler3.2.1 常用的 ChannelInboundHandlerAdapter3.2.1.1 LineBas…

Triton:内存高效注意力机制的实现与解析

Triton:内存高效注意力机制的实现与解析 引言 在深度学习领域,特别是自然语言处理(NLP)任务中,注意力机制是模型理解序列数据的关键组成部分。然而,随着模型规模和输入长度的增长,传统的注意力机制面临着…

微信小程序使用上拉加载onReachBottom。页面拖不动。一直无法触发上拉的事件。

1,可能是原因是你使用了scroll-view的标签,用onReachBottom触发加载事件。这两个是有冲突的。没办法一起使用。如果页面的样式是滚动的是无法去触发页面的onReachBottom的函数的。因此,你使用overflow:auto.来使用页面的某些元素滚动&#xf…

机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)

朴素贝叶斯模型 贝叶斯定理: 常见类型 算法流程 优缺点 集成学习算法 基本原理 常见方法 KNN(聚类模型) 算法性质: 核心原理: 算法流程 优缺点 matlab中的运用 朴素贝叶斯模型 朴素贝叶斯模型是基于贝叶斯…

【2024年华为OD机试】(B卷,100分)- 非严格递增连续数字序列 (JavaScriptJava PythonC/C++)

一、问题描述 题目描述 给定一个仅包含大小写字母和数字的字符串,要求找出其中最长的非严格递增连续数字序列的长度。非严格递增连续数字序列指的是序列中的数字从左到右依次递增或保持不变,例如 12234 就是一个非严格递增连续数字序列。 输入描述 输…

Android中Service在新进程中的启动流程2

目录 1、Service在客户端的启动入口 2、Service启动在AMS的处理 3、Service在新进程中的启动 4、Service与AMS的关系再续 上一篇文章中我们了解了Service在新进程中启动的大致流程,同时认识了与客户端进程交互的接口IApplicationThread以及与AMS交互的接口IActi…

Three城市引擎地图插件Geo-3d

一、简介 基于Three开发,为Three 3D场景提供GIS能力和城市底座渲染能力。支持Web墨卡托、WGS84、GCJ02等坐标系,支持坐标转换,支持影像、地形、geojson建筑、道路,植被等渲染。支持自定义主题。 二、效果 三、代码 //插件初始化…

Ubuntu环境 nginx 源码 编译安装

ubuntu 终端 使用 wget 下载源码 sudo wget http://nginx.org/download/nginx-1.24.0.tar.gz解压刚下载的源码压缩包 nginx-1.24.0.tar.gz sudo tar -zxvf nginx-1.24.0.tar.gz 解压完成 产生 nginx-1.24.0 目录 进入该目录 cd ./nginx-1.24.0 目录下有一个可执行文件 con…

【深度学习】神经网络实战分类与回归任务

第一步 读取数据 ①导入torch import torch ②使用魔法命令,使它使得生成的图形直接嵌入到 Notebook 的单元格输出中,而不是弹出新的窗口来显示图形 %matplotlib inline③读取文件 from pathlib import Path import requestsDATA_PATHPath("dat…