机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)

朴素贝叶斯模型

贝叶斯定理:

常见类型

算法流程

优缺点

集成学习算法

基本原理

常见方法

 KNN(聚类模型)

算法性质:

核心原理:

算法流程

优缺点

matlab中的运用


朴素贝叶斯模型

朴素贝叶斯模型是基于贝叶斯定理与特征条件独立假设的分类方法,在众多领域有广泛应用。

贝叶斯定理

贝叶斯定理解决的核心问题是,当出现新的信息或证据时,如何修正对某个事件发生概率的原有认知。它提供了一种基于先验知识和新证据来更新概率的方法,体现了概率推理的动态过程。

特征条件独立假设:假设给定类别下各个特征之间相互独立。

常见类型

高斯朴素贝叶斯:适用于特征变量为连续型数据,且这些数据服从高斯分布(正态分布)的情况。例如,在根据身高、体重等连续特征判断人的性别时,可假设这些特征在男性和女性群体中分别服从不同参数的高斯分布。

多项式朴素贝叶斯:常用于文本分类等场景,特征变量通常是离散的计数数据。比如在判断一篇文档是否属于某一主题时,以单词在文档中出现的次数作为特征,这些特征符合多项式分布。

伯努利朴素贝叶斯:适用于特征为二值变量的情况,即特征只有两种取值,如真 / 假、是 / 否等。例如在判断邮件是否为垃圾邮件时,可将邮件中某特定关键词的出现(是 / 否)作为二值特征。

算法流程

数据准备:收集数据并进行预处理,包括数据清洗、特征提取等。例如在文本分类中,需要对文本进行分词、去除停用词等操作。

计算先验概率:统计每个类别在训练数据集中出现的频率P(C),作为先验概率。比如在垃圾邮件分类中,统计垃圾邮件和正常邮件在训练集中所占的比例。

计算似然概率:根据特征条件独立假设,计算每个特征在不同类别下的条件概率

。例如在判断一封邮件是否为垃圾邮件时,计算某个关键词在垃圾邮件和正常邮件中出现的概率。

预测:对于新的样本,根据贝叶斯定理计算每个类别下的后验概率

,选择后验概率最大的类别作为预测结果。

,由于

对所有类别相同,所以只需比较分子部分。

优缺点

优点

算法简单高效:基于简单的概率计算,训练和预测速度快,对大规模数据集有较好的适应性。

所需数据量少:在数据较少的情况下仍能表现出较好的性能,且对数据的缺失值不太敏感。

可解释性强:通过计算概率来进行分类决策,结果相对容易理解,可解释每个类别预测的依据。

缺点

特征独立性假设强:实际应用中,特征之间往往存在一定相关性,这可能导致模型性能下降。例如在文本中,某些词汇可能存在语义关联,并不完全独立。

对输入数据的表达形式敏感:不同的特征表示方式可能会对模型效果产生较大影响,如文本分类中不同的分词方法。

集成学习算法

一种机器学习范式,它通过组合多个基学习器(Base Learner)来创建一个更强大、更稳健的模型,以提高模型的泛化能力和预测性能。以下从其原理、常见方法、应用场景、优缺点展开介绍:

基本原理

集成学习的核心思想基于 “三个臭皮匠,赛过诸葛亮” 的理念。不同的基学习器可能在处理数据的不同方面或特征上具有优势,通过将它们结合起来,可以互相补充,减少单一模型的偏差和方差,从而提升整体性能。例如,在预测房价的任务中,一个基学习器可能擅长捕捉房屋面积与价格的关系,另一个可能对房屋所在区域的影响把握更准,集成学习能综合二者优势,做出更准确的预测。

常见方法

Bagging(自举汇聚法)

原理:从原始训练数据集中有放回地随机采样,生成多个与原始数据集大小相同的子数据集,每个子数据集用于训练一个基学习器。由于采样的随机性,不同基学习器基于不同的数据子集进行训练,从而引入了多样性。例如,对于一个包含 1000 个样本的原始数据集,每次有放回地抽取 1000 个样本组成子数据集,多次抽取得到多个不同的子数据集。

代表算法:随机森林(Random Forest)是基于 Bagging 的典型算法,它以决策树为基学习器。在构建每棵决策树时,不仅对样本进行有放回采样,还在节点分裂时随机选择特征子集,进一步增加了决策树之间的差异。最终通过投票(分类任务)或平均(回归任务)的方式综合各决策树的结果。

Boosting(提升法)

原理:基学习器按顺序依次训练,每个新的基学习器会重点关注前一个基学习器预测错误的样本,通过不断调整样本权重,使得后续学习器能够更聚焦于难以分类或预测的样本。例如,在初始阶段,所有样本权重相同,当第一个基学习器训练完成后,将预测错误的样本权重增大,这样下一个基学习器在训练时就会更关注这些样本。

代表算法:Adaboost(自适应提升算法)是最早的 Boosting 算法之一,它通过迭代训练多个弱分类器,并为每个弱分类器赋予不同的权重,最终将这些弱分类器线性组合成一个强分类器。另一个重要的算法是梯度提升树(Gradient Boosting Tree,GBT),它以决策树为基学习器,通过不断拟合残差(即真实值与当前模型预测值的差值)来提升模型性能。

 KNN(聚类模型)

算法性质:

K - Means 属于无监督学习算法,旨在将数据集中的样本划分为 K 个不同的簇,使同一簇内样本相似度高,不同簇间样本相似度低。

核心原理:

随机选择 K 个点作为初始聚类中心,然后将每个样本分配到与其距离最近的聚类中心所在的簇。分配完成后,重新计算每个簇的中心(通常是簇内所有样本的均值)。不断重复样本分配和中心更新步骤,直到聚类中心不再变化或达到预设的迭代次数,此时认为聚类收敛。

算法流程

初始化:随机选择 K 个样本点作为初始聚类中心。

分配样本:计算每个样本到 K 个聚类中心的距离,将样本分配到距离最近的聚类中心所在的簇。

更新聚类中心:计算每个簇内样本的均值,以此更新聚类中心位置。

判断收敛:检查聚类中心是否变化,若变化则返回步骤 2 继续迭代;若不变或达到最大迭代次数,则结束算法。

优缺点

优点:原理简单,计算效率高,能快速处理大规模数据集;对处理数值型数据效果较好。

缺点:需事先指定聚类数 K,K 值选择往往依赖经验且可能影响结果;对初始聚类中心敏感,不同初始值可能导致不同聚类结果;对非凸形状的数据分布或存在噪声的数据聚类效果不佳。

matlab中的运用

1,导入数据*注意这里的变量名训练的和预测的名字要一致

2,matlab工具箱->分类学习器(或者classificationLearner)

(如果是回归学习器,就是reegressionLearner)

3,导入数据

有如下的训练方法

4,并行训练即可

5,导出模型就可以进行预测了

6,预测

第五步也可以采用导出代码来预测

在模型导出的时候选择

然后注释函数行,然后赋值trainingData就可以了

trainingData=x            %%%%%%%x为对应的数据

inputTable = trainingData;

predictorNames = {'VarName1', 'VarName2', 'VarName3', 'VarName4'};

predictors = inputTable(:, predictorNames);

response = inputTable.VarName5;

isCategoricalPredictor = [false, false, false, false];

classNames = categorical({'变色鸢尾'; '山鸢尾'; '维吉尼亚鸢尾'});

% 训练分类器

% 以下代码指定所有分类器选项并训练分类器。

template = templateLinear(...

'Learner', 'Logistic', ...

'Lambda', 'auto', ...

'BetaTolerance', 0.0001);

classificationLinear = fitcecoc(...

predictors, ...

response, ...

'Learners', template, ...

'ClassNames', classNames);

% 使用预测函数创建结果结构体

predictorExtractionFcn = @(t) t(:, predictorNames);

classificationLinearPredictFcn = @(x) predict(classificationLinear, x);

trainedClassifier.predictFcn = @(x) classificationLinearPredictFcn(predictorExtractionFcn(x));

% 向结果结构体中添加字段

trainedClassifier.RequiredVariables = {'VarName1', 'VarName2', 'VarName3', 'VarName4'};

trainedClassifier.ClassificationLinear = classificationLinear;

trainedClassifier.About = '此结构体是从分类学习器 R2023a 导出的训练模型。';

trainedClassifier.HowToPredict = sprintf('要对新表 T 进行预测,请使用: \n [yfit,scores] = c.predictFcn(T) \n将 ''c'' 替换为作为此结构体的变量的名称,例如 ''trainedModel''。\n \n表 T 必须包含由以下内容返回的变量: \n c.RequiredVariables \n变量格式(例如矩阵/向量、数据类型)必须与原始训练数据匹配。\n忽略其他变量。\n \n有关详细信息,请参阅 <a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), ''appclassification_exportmodeltoworkspace'')">How to predict using an exported model</a>。');

% 提取预测变量和响应

% 以下代码将数据处理为合适的形状以训练模型。

%

inputTable = trainingData;

predictorNames = {'VarName1', 'VarName2', 'VarName3', 'VarName4'};

predictors = inputTable(:, predictorNames);

response = inputTable.VarName5;

isCategoricalPredictor = [false, false, false, false];

classNames = categorical({'变色鸢尾'; '山鸢尾'; '维吉尼亚鸢尾'});

% 执行交叉验证

KFolds = 5;

cvp = cvpartition(response, 'KFold', KFolds);

% 将预测初始化为适当的大小

validationPredictions = response;

numObservations = size(predictors, 1);

numClasses = 3;

validationScores = NaN(numObservations, numClasses);

for fold = 1:KFolds

trainingPredictors = predictors(cvp.training(fold), :);

trainingResponse = response(cvp.training(fold), :);

foldIsCategoricalPredictor = isCategoricalPredictor;

% 训练分类器

% 以下代码指定所有分类器选项并训练分类器。

template = templateLinear(...

'Learner', 'Logistic', ...

'Lambda', 'auto', ...

'BetaTolerance', 0.0001);

classificationLinear = fitcecoc(...

trainingPredictors, ...

trainingResponse, ...

'Learners', template, ...

'ClassNames', classNames);

% 使用预测函数创建结果结构体

classificationLinearPredictFcn = @(x) predict(classificationLinear, x);

validationPredictFcn = @(x) classificationLinearPredictFcn(x);

% 向结果结构体中添加字段

% 计算验证预测

validationPredictors = predictors(cvp.test(fold), :);

[foldPredictions, foldScores] = validationPredictFcn(validationPredictors);

% 按原始顺序存储预测

validationPredictions(cvp.test(fold), :) = foldPredictions;

validationScores(cvp.test(fold), :) = foldScores;

end

% 计算验证准确度

correctPredictions = (validationPredictions == response);

isMissing = ismissing(response);

correctPredictions = correctPredictions(~isMissing);

validationAccuracy = sum(correctPredictions)/length(correctPredictions);

决策树的可视化:

figure(1)

view ( trainingModel.ClassificationTree,’Mode’,’graph’)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/958419.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【2024年华为OD机试】(B卷,100分)- 非严格递增连续数字序列 (JavaScriptJava PythonC/C++)

一、问题描述 题目描述 给定一个仅包含大小写字母和数字的字符串&#xff0c;要求找出其中最长的非严格递增连续数字序列的长度。非严格递增连续数字序列指的是序列中的数字从左到右依次递增或保持不变&#xff0c;例如 12234 就是一个非严格递增连续数字序列。 输入描述 输…

Android中Service在新进程中的启动流程2

目录 1、Service在客户端的启动入口 2、Service启动在AMS的处理 3、Service在新进程中的启动 4、Service与AMS的关系再续 上一篇文章中我们了解了Service在新进程中启动的大致流程&#xff0c;同时认识了与客户端进程交互的接口IApplicationThread以及与AMS交互的接口IActi…

Three城市引擎地图插件Geo-3d

一、简介 基于Three开发&#xff0c;为Three 3D场景提供GIS能力和城市底座渲染能力。支持Web墨卡托、WGS84、GCJ02等坐标系&#xff0c;支持坐标转换&#xff0c;支持影像、地形、geojson建筑、道路&#xff0c;植被等渲染。支持自定义主题。 二、效果 三、代码 //插件初始化…

Ubuntu环境 nginx 源码 编译安装

ubuntu 终端 使用 wget 下载源码 sudo wget http://nginx.org/download/nginx-1.24.0.tar.gz解压刚下载的源码压缩包 nginx-1.24.0.tar.gz sudo tar -zxvf nginx-1.24.0.tar.gz 解压完成 产生 nginx-1.24.0 目录 进入该目录 cd ./nginx-1.24.0 目录下有一个可执行文件 con…

【深度学习】神经网络实战分类与回归任务

第一步 读取数据 ①导入torch import torch ②使用魔法命令&#xff0c;使它使得生成的图形直接嵌入到 Notebook 的单元格输出中&#xff0c;而不是弹出新的窗口来显示图形 %matplotlib inline③读取文件 from pathlib import Path import requestsDATA_PATHPath("dat…

60,【1】BUUCF web [RCTF2015]EasySQL1

先查看源码 1&#xff0c;changepwd&#xff08;修改密码&#xff09; <?php // 开启会话&#xff0c;以便使用会话变量 session_start();// 设置页面的内容类型为 HTML 并使用 UTF-8 编码 header("Content-Type: text/html; charsetUTF-8");// 引入配置文件&…

Chrome插件:图片缩放为头像(128*128)

前置条件&#xff1a; 安装有chrome谷歌浏览器的电脑 使用步骤&#xff1a; 1.打开chrome扩展插件 2.点击管理扩展程序 3.加载已解压的扩展程序 4.选择对应文件夹 5.成功后会出现一个扩展小程序 6.点击对应小程序 7.使用小程序 8.拖拽成功后会自动保存到下载 代码&#xf…

machine learning knn算法之使用KNN对鸢尾花数据集进行分类

通过导入必要的scikit-learn导入必要的库&#xff0c;加载给定的数据&#xff0c;划分测试集和训练集之后训练预测和评估即可 具体代码如下&#xff1a; import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split f…

电子应用设计方案102:智能家庭AI鱼缸系统设计

智能家庭 AI 鱼缸系统设计 一、引言 智能家庭 AI 鱼缸系统旨在为鱼类提供一个健康、舒适的生活环境&#xff0c;同时为用户提供便捷的管理和观赏体验。 二、系统概述 1. 系统目标 - 自动维持水质稳定&#xff0c;包括水温、酸碱度、硬度和溶氧量等关键指标。 - 智能投食&…

【C语言系列】深入理解指针(3)

深入理解指针&#xff08;3&#xff09; 一、字符指针变量二、数组指针变量2.1数组指针变量是什么&#xff1f;2.2数组指针变量怎么初始化&#xff1f; 三、二维数组传参的本质四、函数指针变量4.1函数指针变量的创建4.2函数指针变量的使用4.3两段有趣的代码4.4 typedef关键字 …

2024年度总结-CSDN

2024年CSDN年度总结 Author&#xff1a;OnceDay Date&#xff1a;2025年1月21日 一位热衷于Linux学习和开发的菜鸟&#xff0c;试图谱写一场冒险之旅&#xff0c;也许终点只是一场白日梦… 漫漫长路&#xff0c;有人对你微笑过嘛… 文章目录 2024年CSDN年度总结1. 整体回顾2…

Linux下php8安装phpredis扩展的方法

Linux下php8安装phpredis扩展的方法 下载redis扩展执行安装编辑php.ini文件重启php-fpmphpinfo 查看 下载redis扩展 前提是已经安装好redis服务了 php-redis下载地址 https://github.com/phpredis/phpredis 执行命令 git clone https://github.com/phpredis/phpredis.git执行…

我的2024年度历程回顾

一、自我介绍 这个是我的 个人主页 &#xff1a; zxctscl 从2023年到现在一些小成就 我主要分享的文章是C语言和C方面&#xff1a; 当然也有不少算法题&#xff1a; 二、年度回顾 在过去的一年里&#xff0c;也有不少收获&#xff1a; 在C编程语言的学习方面取得了显著…

AIGC专栏18——EasyAnimateV5.1版本详解 应用Qwen2 VL作为文本编码器,支持轨迹控制与相机镜头控制

AIGC专栏18——EasyAnimateV5.1版本详解 应用Qwen2 VL作为文本编码器&#xff0c;支持轨迹控制与相机镜头控制 学习前言相关地址汇总源码下载地址HF测试链接MS测试链接 测试效果Image to VideoText to Video轨迹控制镜头控制 EasyAnimate详解技术储备Qwen2 VLStable Diffusion …

YOLOv8改进,YOLOv8检测头融合DSConv(动态蛇形卷积),并添加小目标检测层(四头检测),适合目标检测、分割等

精确分割拓扑管状结构例如血管和道路,对各个领域至关重要,可确保下游任务的准确性和效率。然而,许多因素使任务变得复杂,包括细小脆弱的局部结构和复杂多变的全局形态。在这项工作中,注意到管状结构的特殊特征,并利用这一知识来引导 DSCNet 在三个阶段同时增强感知:特征…

U3D的.Net学习

Mono&#xff1a;这是 Unity 最初采用的方式&#xff0c;它将 C# 代码编译为中间语言 (IL)&#xff0c;然后在目标平台上使用虚拟机 (VM) 将其转换为本地机器码执行。 IL2CPP&#xff1a;这是一种较新的方法&#xff0c;它会将 C# 代码先编译为 C 代码&#xff0c;再由 C 编译器…

【MySQL】 库的操作

欢迎拜访&#xff1a;雾里看山-CSDN博客 本篇主题&#xff1a;【MySQL】 库的操作 发布时间&#xff1a;2025.1.23 隶属专栏&#xff1a;MySQL 目录 库的创建语法使用 编码规则认识编码集查看数据库默认的编码集和校验集查看数据库支持的编码集和校验集指定编码创建数据库验证不…

【随手笔记】FFT资料整理

&#xff08;一&#xff09;结果验证 函数波形示例1 #define Fs 44800 #define NPT 256 void InitBufInArray() {int i 0;float fx 0;for(i0; i<NPT; i){// fx 1500 * sin(2*PI * i * 350.0 / Fs) // 2700 * sin(2*PI * i * 8400.0 / Fs) // 4000 * sin(2*P…

Spark Streaming编程基础

文章目录 1. 流式词频统计1.1 Spark Streaming编程步骤1.2 流式词频统计项目1.2.1 创建项目1.2.2 添加项目依赖1.2.3 修改源目录1.2.4 添加scala-sdk库1.2.5 创建日志属性文件 1.3 创建词频统计对象1.4 利用nc发送数据1.5 启动应用&#xff0c;查看结果 2. 编程模型的基本概念3…

R语言学习笔记之开发环境配置

一、概要 整个安装过程及遇到的问题记录 操作步骤备注&#xff08;包含遇到的问题&#xff09;1下载安装R语言2下载安装RStudio3离线安装pacman提示需要安装Rtools4安装Rtoolspacman、tidyfst均离线安装完成5加载tidyfst报错 提示需要安装依赖&#xff0c;试错逐步下载并安装…