Ardupilot开源无人机之Geek SDK进展2024-2025
- 1. 源由
- 2. 状态
- 3. TODO
- 3.1 【进行中】跟踪目标框
- 3.2 【暂停】onnxruntime版本
- 3.3 【完成】CUDA 11.8版本
- 3.4 【完成】pytorch v2.5.1版本
- 3.5 【未开始】Inference性能
- 3.6 【未开始】特定目标集Training
- 4. Extra-Work
- 4.1 【完成】CUDA 12.3版本
- 4.2 【暂停】TensorRT 8.6
- 4.3 【完成】Jetpack6.2(Jetson Orin Nano Super)
- 5. 同步工作
- 6. 参考资料
- 7. 问题
- 7.1 风扇启动全速噪音问题
- 7.2 Jetson Orin Nano Super性能升级
- 7.3 Jetpack5 TensorRT 8.5不可升级版
1. 源由
前期搭建《Ardupilot开源无人机之Geek SDK》,主要目的是:
- 基于:《ArduPilot开源飞控系统 - 无人车、船、飞机等》
- 验证:《Ardupilot & OpenIPC & 基于WFB-NG构架分析和数据链路思考》可行性
- 框架:打通硬实时、软实时的控制面和数据面链路,提供一个简单、多样、高效的验证平台 jetson-fpv
2. 状态
-
简单示例
-
框架成型:jetson-fpv
-
支持特性:
-
FPV features (FPV功能)
- MSPOSD for ground station (OSD)
- video-viewer (视频图像,可以达到120FPS)
- Adaptive wireless link (链路自适应)
-
Jetson video analysis (Jetson推理功能)
- detectnet for object detection
- segnet for segmentation
- posenet for pose estimation
- imagenet for image recognition
-
yolo for object detection (YOLO目标检测)
-
Real time video stabilizer
-
DeepStream analysis (DeepStream目标跟踪分析)
- ByteTrack
- NvDCF tracker
-
-
硬件形态
3. TODO
优先级:
- 【0101暂定】3.2 onnxruntime版本 > 3.1 跟踪目标框 > 3.5 Inference性能 > 3.6 特定目标集Training > 3.3 CUDA 11.8版本 > 3.4 pytorch v2.5.1版本
- 【0109变更】3.3 CUDA 11.8版本 > 3.4 pytorch v2.5.1版本 > 3.2 onnxruntime版本 > 3.1 跟踪目标框 > 3.5 Inference性能 > 3.6 特定目标集Training
- 【0117变更】目前NVIDIA主要支持L4T36.x(ubuntu22.04),对L4T35.x(ubuntu20.04)支持力度日渐转弱,进度很慢(尽管官方论坛说没有停止支持)。将不连续帧跟踪目标框持续OSD输出的问题尽快提上日程。
└──> 【完成】3.3 CUDA 11.8版本
│ └──> 【完成】4.1 CUDA 12.3版本
└──> 【完成】3.4 pytorch v2.5.1版本
└──> 【进行中】4.2 TensorRT 8.6
├──> 【进行中】3.2 onnxruntime版本
└──> 【进行中】3.1 跟踪目标框
└──> 3.5 Inference性能
└──> 3.6 特定目标集Training
- 【0120变更】鉴于目前NVIDIA闭源,虽然尚未宣布Jetpack5的EOL时间,但是实际在版本支持和研发投入上,已经明显出现乏力(详见:7.3)!而目前来说Super版本似乎从性能上是一个改观,为此我们后续将投入BSP6.2版本,顺便调整优先级,废弃一些闭源升级问题带来的折腾。
├──> 【完成】3.3 CUDA 11.8版本
│ │ └──> 【完成】4.1 CUDA 12.3版本
│ └──> 【完成】3.4 pytorch v2.5.1版本
│ └──> 【暂停】4.2 TensorRT 8.6
│ └──> 【暂停】3.2 onnxruntime版本
└──> 【完成】4.3 Jetpack6.2(Jetson Orin Nano Super)
└──> 【进行中】3.1 跟踪目标框
└──> 3.5 Inference性能
└──> 3.6 特定目标集Training
3.1 【进行中】跟踪目标框
- DeepStream-Yolo - How to keep the bounding boxes when interval is NOT zero? #604
- NVIDIA - How to keep the bounding boxes when interval is NOT zero?
3.2 【暂停】onnxruntime版本
- Yolov8s no bounding box on default settings #597
- NVIDIA - Build onnxruntime v1.19.2 for Jetpack 5.1.4 L4T 35.6 Faild
- microsoft/onnxruntime - Build onnxruntime v1.19.2 for Jetpack 5.1.4 L4T 35.6 Faild #23267
- [Build] Trying to build on a embedded device that doesn’t support BFLOAT16 #19920
- mlas: fix build on ARM64 #21099
通过上面的问题沟通,逐步锁定源头和原因:ARCH对bf16的硬件支持 vs gcc版本问题。
- arm64: force -mcpu to be valid #21117
基于Jetpack5.1.4升级gcc11版本
升级CUDA版本11.4.315 到11.8.89
提升3.3 CUDA 11.8任务优先级
需要考虑OpenCV对CUDA的版本依赖问题
- [Build] v1.19.2 abseil_cpp failed: 2 with JP5.1.4 gcc/g++13 #23286
- Build onnxruntime 1.19.2 fail due to API HardwareCompatibilityLevel
3.3 【完成】CUDA 11.8版本
- How to install CUDA 11.8 on Jetpack 5.1.4 L4T 35.6?
- Linux 35.5 + JetPack v5.1.3@CUDA安装和版本切换
目前,了解到支持的版本状况:CUDA Toolkit Archive
- Ubuntu 20.04 支持到 CUDA 12.3 (同时支持Ubuntu 22.04)
- 从CUDA 12.4开始仅支持Ubuntu 22.04
安装deb文件
$ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/arm64/cuda-ubuntu2004.pin
$ sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
$ wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda-tegra-repo-ubuntu2004-11-8-local_11.8.0-1_arm64.deb
$ sudo dpkg -i cuda-tegra-repo-ubuntu2004-11-8-local_11.8.0-1_arm64.deb
复制CUDA密钥
$ sudo cp /var/cuda-tegra-repo-ubuntu2004-11-8-local/cuda-*-keyring.gpg /usr/share/keyrings/
//more specific
$ sudo cp /var/cuda-tegra-repo-ubuntu2004-11-8-local/cuda-tegra-95320BC3-keyring.gpg /usr/share/keyrings/
安装cuda及其依赖组件
$ sudo apt-get update
$ sudo apt-get -y install cuda
3.4 【完成】pytorch v2.5.1版本
- pytorch v2.5.1 build for nvidia jetson orin nano 8GB #143624
- Linux 35.6 + JetPack v5.1.4之 pytorch编译
- Linux 35.6 + JetPack v5.1.4之 pytorch升级
- Release pytorch-v2.5.1+l4t35.6-cp38-cp38-aarch64
pytorch 2.5.1 编译:
$ cat ./build.sh
#!/bin/bash
# git clone https://github.com/SnapDragonfly/pytorch.git
# git checkout nvidia_v2.5.1
# git submodule update --init --recursive
export USE_NCCL=0
export USE_DISTRIBUTED=0
export USE_QNNPACK=0
export USE_PYTORCH_QNNPACK=0
export TORCH_CUDA_ARCH_LIST="8.7"
export PYTORCH_BUILD_VERSION=2.5.1
export PYTORCH_BUILD_NUMBER=1
export L4T_BUILD_VERSION=35.6
export USE_PRIORITIZED_TEXT_FOR_LD=1
export USE_FLASH_ATTENTION=0
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
python3 setup.py bdist_wheel
pytorch 2.5.1 二进制安装:
$ wget https://github.com/SnapDragonfly/pytorch/releases/download/v2.5.1%2Bl4t35.6-cp38-cp38-aarch64/torch-2.5.1+l4t35.6-cp38-cp38-linux_aarch64.whl
$ sudo pip3 install torch-2.5.1+l4t35.6-cp38-cp38-linux_aarch64.whl
torchvision安装:
$ git clone https://github.com/SnapDragonfly/vision.git torchvision
$ cd torchvision
$ git checkout nvidia_v0.20.1
$ export BUILD_VERSION=0.20.1
$ sudo python3 setup.py install --user
$ cd ..
升级JetPack5.1.4 L4T35.6后的版本信息:
Software part of jetson-stats 4.2.12 - (c) 2024, Raffaello Bonghi
Model: NVIDIA Orin Nano Developer Kit - Jetpack 5.1.4 [L4T 35.6.0]
NV Power Mode[0]: 15W
Serial Number: [XXX Show with: jetson_release -s XXX]
Hardware:
- P-Number: p3767-0005
- Module: NVIDIA Jetson Orin Nano (Developer kit)
Platform:
- Distribution: Ubuntu 20.04 focal
- Release: 5.10.216-tegra
jtop:
- Version: 4.2.12
- Service: Active
Libraries:
- CUDA: 11.8.89
- cuDNN: 8.6.0.166
- TensorRT: 8.5.2.2
- VPI: 2.4.8
- Vulkan: 1.3.204
- OpenCV: 4.9.0 - with CUDA: YES
DeepStream C/C++ SDK version: 6.3
Python Environment:
Python 3.8.10
GStreamer: YES (1.16.3)
NVIDIA CUDA: YES (ver 11.4, CUFFT CUBLAS FAST_MATH)
OpenCV version: 4.9.0 CUDA True
YOLO version: 8.3.33
Torch version: 2.5.1+l4t35.6
Torchvision version: 0.20.1a0+3ac97aa
DeepStream SDK version: 1.1.8
3.5 【未开始】Inference性能
- DeepStream-Yolo - Anyway to boost yolo performance on Jetson Orin? #605
- NVIDIA - Anyway to boost yolo performance on Jetson Orin?
A: DeepStream-Yolo - INT8 calibration (PTQ)
B: NVIDIA - NvDCF tracker plugin
3.6 【未开始】特定目标集Training
TBD.
4. Extra-Work
4.1 【完成】CUDA 12.3版本
在CUDA 11.8基础上遇到了 Build onnxruntime 1.19.2 fail due to API HardwareCompatibilityLevel问题,貌似API版本不兼容,那么就升到最高支持的12.3尝试下。
$ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/sbsa/cuda-ubuntu2004.pin
$ sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
$ wget https://developer.download.nvidia.com/compute/cuda/12.3.2/local_installers/cuda-repo-ubuntu2004-12-3-local_12.3.2-545.23.08-1_arm64.deb
$ sudo dpkg -i cuda-repo-ubuntu2004-12-3-local_12.3.2-545.23.08-1_arm64.deb
$ sudo cp /var/cuda-repo-ubuntu2004-12-3-local/cuda-5B67C214-keyring.gpg /usr/share/keyrings/
$ sudo apt-get update
$ sudo apt-get -y install cuda-toolkit-12-3
- 版本信息
Software part of jetson-stats 4.2.12 - (c) 2024, Raffaello Bonghi
Model: NVIDIA Orin Nano Developer Kit - Jetpack 5.1.4 [L4T 35.6.0]
NV Power Mode[0]: 15W
Serial Number: [XXX Show with: jetson_release -s XXX]
Hardware:
- P-Number: p3767-0005
- Module: NVIDIA Jetson Orin Nano (Developer kit)
Platform:
- Distribution: Ubuntu 20.04 focal
- Release: 5.10.216-tegra
jtop:
- Version: 4.2.12
- Service: Active
Libraries:
- CUDA: 12.3.107
- cuDNN: 8.6.0.166
- TensorRT: 8.5.2.2
- VPI: 2.4.8
- Vulkan: 1.3.204
- OpenCV: 4.9.0 - with CUDA: YES
DeepStream C/C++ SDK version: 6.3
Python Environment:
Python 3.8.10
GStreamer: YES (1.16.3)
NVIDIA CUDA: YES (ver 11.4, CUFFT CUBLAS FAST_MATH)
OpenCV version: 4.9.0 CUDA True
YOLO version: 8.3.33
PYCUDA version: 2024.1.2
Torch version: 2.5.1+l4t35.6
Torchvision version: 0.20.1a0+3ac97aa
DeepStream SDK version: 1.1.8
onnxruntime version: 1.16.3
onnxruntime-gpu version: 1.18.0
4.2 【暂停】TensorRT 8.6
- TensorRT 8.6 GA for Ubuntu 20.04 and CUDA 12.0 and 12.1 DEB local repo Package
- Guide for Upgrading TensorRT
- How to translate xx/x scripts of TensorRT installation?
- How to upgrade tensorrt to latest version for Jetpack 5.1.4?
4.3 【完成】Jetpack6.2(Jetson Orin Nano Super)
参考:Linux 36.3@Jetson Orin Nano之系统安装
- 下载Jetpack6.2
- 安装Linux36.4.3 - Jetson Linux Developer Guide (online version)
- 准备安装环境
$ wget https://developer.nvidia.com/downloads/embedded/l4t/r36_release_v4.3/release/Jetson_Linux_r36.4.3_aarch64.tbz2
$ wget https://developer.nvidia.com/downloads/embedded/l4t/r36_release_v4.3/release/Tegra_Linux_Sample-Root-Filesystem_r36.4.3_aarch64.tbz2
$ tar xf Jetson_Linux_r36.4.3_aarch64.tbz2
$ sudo tar xpf Tegra_Linux_Sample-Root-Filesystem_r36.4.3_aarch64.tbz2 -C Linux_for_Tegra/rootfs/
$ cd Linux_for_Tegra/
$ sudo ./tools/l4t_flash_prerequisites.sh
$ sudo ./apply_binaries.sh
- 调整IPV6环境
$ sudo vi /etc/sysctl.conf
or
$ sudo sysctl net.ipv6.conf.all.disable_ipv6=0
$ sudo sysctl net.ipv6.conf.default.disable_ipv6=0
- 烧录固件(烧录模式)
$ sudo ./tools/kernel_flash/l4t_initrd_flash.sh --external-device nvme0n1p1 \
-c tools/kernel_flash/flash_l4t_t234_nvme.xml -p "-c bootloader/generic/cfg/flash_t234_qspi.xml" \
--showlogs --network usb0 jetson-orin-nano-devkit internal
- 接上显示器、键盘、鼠标
启动Jetson Orin Nano,按照桌面提示设置系统,更新系统:
$ sudo apt-get update
$ sudo apt-get upgrade
5. 同步工作
- Open FPV VTX开源之DIY硬件形态
6. 参考资料
【1】Ardupilot & OpenIPC & 基于WFB-NG构架分析和数据链路思考
【2】ArduPilot开源飞控之MAVProxy深入研读系列 - 2蜂群链路
【3】Ardupilot开源飞控之FollowMe计划
【4】Ardupilot开源飞控之FollowMe验证平台搭建
【5】Ardupilot开源无人机之Geek SDK讨论
【6】OpenIPC开源FPV之工程框架
【7】OpenIPC开源FPV之重要源码启动配置
【8】wfb-ng 开源代码之Jetson Orin安装
【9】wfb-ng 开源代码之Jetson Orin问题定位
【10】Linux 35.5 + JetPack v5.1.3@CUDA安装和版本切换
【11】Linux 35.6 + JetPack v5.1.4@yolo安装
【12】Linux 35.6 + JetPack v5.1.4@python opencv安装
【13】Linux 35.6 + JetPack v5.1.4@DeepStream安装
【14】Linux 35.6 + JetPack v5.1.4之RTP实时视频Python框架
【15】Linux 35.6 + JetPack v5.1.4之 pytorch编译
【16】Linux 35.6 + JetPack v5.1.4之 pytorch升级
【17】OpenIPC开源FPV之Adaptive-Link工程解析
【18】NVIDIA DeepStream插件之Gst-nvtracker
【19】Linux 36.3@Jetson Orin Nano之系统安装
7. 问题
7.1 风扇启动全速噪音问题
- Crazy loud noise fan early before NVIDIA logo display
- How to set fan pwm io low/high in the early boot stage?
7.2 Jetson Orin Nano Super性能升级
Jetson Orin Nano Super DevKit硬件上稍有差异,但是Jetson Orin Nano只要BSP升级到Jetpack6.2 就具备了67 TOPS性能
- What’s the difference between Jetson Orin Nano vs Jetson Orin Nano Super?
- NVIDIA Jetson Orin - Next-level AI performance for next-gen robotics and edge solutions
7.3 Jetpack5 TensorRT 8.5不可升级版
鉴于目前NVIDIA反馈在Jetpack5.1.4上TensorRT仅支持到8.5版本,但是从TensorRT 版本发布上看,确实也能看到8.6GA版本【怀疑存在诸多未言明问题】。
虽然,开源也有不少问题,但是随着我们的投入,逐步解决了开源系统的升级编译,但是对于闭源系统,确实非常无奈!
- Has JetPack 5 reached its end of life (EOL), or is there an EOL planned for it?
- How to translate xx/x scripts of TensorRT installation?