音频入门(二):音频数据增强

本文介绍了一些常见的音频数据增强方法,并给出了代码实现。

目录

一、简介

二、代码

1. 安装必要的库

2. 代码

3. 各函数的介绍

4. 使用方法

 参考:


一、简介

音频数据增强是机器学习和深度学习领域中用于改善模型性能和泛化能力的技术。

使用数据增强的好处有:

  • 泛化能力:提高模型对未见数据的处理能力。
  • 减少过拟合:通过增加数据多样性来降低训练误差。
  • 模拟真实性:模拟现实世界中的音频变化。
  • 提升鲁棒性:使模型对噪声和失真更加不敏感。
  • 小数据集扩展:在数据量有限时增加有效样本。
  • 性能提升:通常能提高模型的测试性能。
  • 适应录音条件:适应不同的录音环境和设备。
  • 半监督/无监督学习:增强未标记数据的利用。
  • 可解释性:帮助理解模型决策。
  • 跨领域应用:增强模型在不同领域的适用性。

二、代码

1. 安装必要的库

pip install librosa soundfile

2. 代码

这里介绍几种常用的数据增强,代码如下:


import librosa
import numpy as np
import soundfile as sf


# 载入音频文件
def load_audio_file(file_path, sr=None):
    audio, sample_rate = librosa.load(file_path, sr=sr)
    return audio, sample_rate


# 时间拉伸
def time_stretch(audio, rate):
    return librosa.effects.time_stretch(audio, rate=rate)


# 音高变换
def pitch_shift(audio, sample_rate, n_steps):
    return librosa.effects.pitch_shift(audio, sr=sample_rate, n_steps=n_steps)


# 添加噪声
def add_noise(audio, noise_factor):
    noise = np.random.normal(0, 1, audio.shape)
    noisy_audio = audio + noise_factor * noise
    return noisy_audio


# 保存音频
def save_audio(file_path, audio, sample_rate):
    sf.write(file_path, audio, sample_rate)

3. 各函数的介绍

  1. load_audio_file(file_path, sr=None)

    • 载入指定路径 file_path 的音频文件。
    • sr 参数用于指定音频的采样率(sampling rate)。如果未指定,将使用原始音频文件的采样率。
    • 返回音频信号 audio 和其采样率 sample_rate
  2. time_stretch(audio, rate)

    • 对音频信号 audio 进行时间拉伸,改变其持续时间而不改变音高。
    • rate 参数控制拉伸的程度,例如 rate=1.2 表示音频播放速度提高到原来的1.2倍。
  3. pitch_shift(audio, sample_rate, n_steps)

    • 对音频信号 audio 进行音高变换,改变音高而不改变播放速度。
    • sample_rate 是音频的采样率。
    • n_steps 是半音阶的步长,正值表示提高音高,负值表示降低音高。
  4. add_noise(audio, noise_factor)

    • 向音频信号 audio 添加高斯噪声。
    • noise_factor 参数控制噪声的强度,较大的值会导致更多的噪声被添加到音频中。
  5. save_audio(file_path, audio, sample_rate)

    • 将处理后的音频信号 audio 保存到文件 file_path
    • sample_rate 是音频的采样率,确保保存的音频文件具有正确的采样率。

4. 使用方法

使用上述的函数可以创建一个音频增强的pipeline,以提高音频分类模型的泛化能力和鲁棒性,以下是一个简单的使用pipeline:

# 加载音频文件
audio_path = 'path_to_your_audio_file.wav'
audio, sr = load_audio_file(audio_path)

# 时间拉伸:播放速度提高20%
stretched_audio = time_stretch(audio, rate=1.2)

# 音高变换:降低半音
pitch_shifted_audio = pitch_shift(audio, sr, n_steps=-1)

# 添加噪声:噪声强度为原始音频幅度的0.01倍
noisy_audio = add_noise(audio, noise_factor=0.01)

# 保存增强后的音频
save_audio('enhanced_audio.wav', stretched_audio, sr)
save_audio('pitch_shifted_audio.wav', pitch_shifted_audio, sr)
save_audio('noisy_audio.wav', noisy_audio, sr)

 增强后的音频,可以用于音频分类/声纹识别等模型的训练中,比如我们上一篇博客《音频入门(一):音频基础知识与分类的基本流程》中介绍的音频分类算法,就可以使用这些增强的数据来提高模型的泛化能力:

  • 数据增强使得模型能够学习到在不同条件下音频特征的一致性,从而提高其对新情况的适应能力。
  • 数据增强使模型在训练过程中接触到各种扰动,迫使模型学习到更加鲁棒的特征表示,这些特征与音频的本质属性相关,而不受具体录音条件的影响。
  • 当原始数据集较小或包含的样本多样性不足时,模型可能会学习到数据中的特定噪声或异常值,导致过拟合。数据增强通过增加样本数量和多样性,帮助模型捕捉到更一般化的特征。
  • 现实世界中的音频记录会受到多种因素的影响,如背景噪声、不同的录音设备和环境。增强后的音频更贴近真实世界的复杂性,使模型在面对实际应用时更加稳定。
  • 通过增强技术,模型学习到的类内样本的分布更加紧凑,减少了类内方差,有助于模型更好地区分不同类别。
  • 增强后的样本可能在特征空间中分布得更广,有助于增加不同类别之间的距离,从而提高分类的准确性。
  • 数据增强有助于模型学习到更加清晰和准确的决策边界,使得模型在面对边缘样本或困难样本时,能够做出更准确的分类决策。
  • 数据增强有助于模型学习到更加清晰和准确的决策边界,使得模型在面对边缘样本或困难样本时,能够做出更准确的分类决策。

5. 增强效果可视化

原始音频(两通道):

增强后的音频(单通道): 

 

参考:

1. Librosa: https://librosa.org/

2. python-soundfile — python-soundfile 0.11.0 documentation

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/957262.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Oracle审计

审计是监控选定的用户数据库操作的过程 审计的目的: 调查可疑的数据库活动: 审计可以帮助检测和跟踪潜在的 security breaches、未授权的访问尝试或其他异常行为。通过分析审计日志,可以确定可疑活动的来源、时间、频率和影响。 收集特定数…

Appium(四)

一、app页面元素定位 1、通过id定位元素: resrouce-id2、通过ClassName定位:classname3、通过AccessibilityId定位:content-desc4、通过AndroidUiAutomator定位5、通过xpath定位xpath、id、class、accessibility id、android uiautomatorUI AutomatorUI自…

AUTOSAR OS模块详解(三) Alarm

AUTOSAR OS模块详解(三) Alarm 本文主要介绍AUTOSAR OS的Alarm,并对基于英飞凌Aurix TC3XX系列芯片的Vector Microsar代码和配置进行部分讲解。 文章目录 AUTOSAR OS模块详解(三) Alarm1 简介2 功能介绍2.1 触发原理2.2 工作类型2.3 Alarm启动方式2.4 Alarm配置2.5…

【0x04】HCI_Connection_Request事件详解

目录 一、事件概述 二、事件格式及参数 2.1. HCI_Connection_Request 事件格式 2.2. BD_ADDR 2.3. Class_Of_Device 2.4. Link_Type 三、主机响应 3.1. ACL链接类型 3.2. SCO或eSCO链接类型 四、应用场景 4.1. 设备配对场景 4.2. 蓝牙文件传输场景 4.3. 蓝牙物联网…

洛谷题目:P2742 [USACO5.1] 圈奶牛Fencing the Cows /【模板】二维凸包 题解 (本题较难)

题目传送门:P2742 [USACO5.1] 圈奶牛Fencing the Cows /【模板】二维凸包 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 另:由于一些文章的疏忽,导致一些错别字,代码错误,公式错误导致大家的理解和误导,…

Qt中的按钮组:QPushButton、QToolButton、QRadioButton和QCheckBox使用方法(详细图文教程)

💪 图像算法工程师,专业从事且热爱图像处理,图像处理专栏更新如下👇: 📝《图像去噪》 📝《超分辨率重建》 📝《语义分割》 📝《风格迁移》 📝《目标检测》 &a…

2025-1-21 SUCTF 2025 crypto signin

今年充满期待,上线一看两道题,一道看名字应该是跟环相关的,估计做不出来,还有一道签到题,没做出来,遗憾下线 文章目录 signin signin from Crypto.Util.number import * from secret import flagbit_lengt…

C语言之图像文件的属性

🌟 嗨,我是LucianaiB! 🌍 总有人间一两风,填我十万八千梦。 🚀 路漫漫其修远兮,吾将上下而求索。 图像文件属性提取系统设计与实现 目录 设计题目设计内容系统分析总体设计详细设计程序实现…

【Linux】华为服务器使用U盘安装统信操作系统

目录 一、准备工作 1.1 下载UOS官方系统 1.2制作启动U盘 1.3 服务器智能管理系统iBMC 二、iBMC设置U盘启动 一、准备工作 1.1 下载UOS官方系统 服务器CPU的架构是x86-64还是aarch64),地址:统信UOS生态社区 - 打造操作系统创…

macOS如何进入 Application Support 目录(cd: string not in pwd: Application)

错误信息 cd: string not in pwd: Application 表示在当前目录下找不到名为 Application Support 的目录。可能的原因如下: 拼写错误或路径错误:确保你输入的目录名称正确。目录名称是区分大小写的,因此请确保使用正确的大小写。正确的目录名…

python麻辣香锅菜品推荐

1.推荐算法概述 推荐算法出现得很早,最早的推荐系统是卡耐基梅隆大学推出的Web Watcher浏览器导航系统,可以根据当的搜索目标和用户信息,突出显示对用户有用的超链接。斯坦福大学则推出了个性化推荐系统LIRA.AT&T实验室于1997年提出基于协作过滤的个性化推荐系统…

利用大型语言模型在量化投资中实现自动化策略

“Automate Strategy Finding with LLM in Quant investment” 论文地址:https://arxiv.org/pdf/2409.06289 摘要 这个新提出的量化股票投资框架,利用大型语言模型(LLMs)与多智能体系统相结合的方法,通过LLMs从包括数…

JAVA:Spring Boot 实现责任链模式处理订单流程的技术指南

1、简述 在复杂的业务系统中,订单流程往往需要一系列的操作,比如验证订单、检查库存、处理支付、更新订单状态等。责任链模式(Chain of Responsibility)可以帮助我们将这些处理步骤分开,并且以链式方式处理每一个操作…

(开源)基于Django+Yolov8+Tensorflow的智能鸟类识别平台

1 项目简介(开源地址在文章结尾) 系统旨在为了帮助鸟类爱好者、学者、动物保护协会等群体更好的了解和保护鸟类动物。用户群体可以通过平台采集野外鸟类的保护动物照片和视频,甄别分类、实况分析鸟类保护动物,与全世界各地的用户&…

算法专题(三):二分查找

本篇还是像之前一样,以举例子的形式向大家讲解!每道题的题目均是传送门!点击跳转对应题! 目录 一、二分查找 1.1 题目 1.2 思路 1.3 代码实现 总结(模版) 朴素版: 二、在排序数组中查找…

C# OpenCvSharp 部署文档矫正,包括文档扭曲/模糊/阴影等情况

目录 说明 效果 模型 项目 代码 下载 参考 C# OpenCvSharp 部署文档矫正,包括文档扭曲/模糊/阴影等情况 说明 地址:https://github.com/RapidAI/RapidUnDistort 修正文档扭曲/模糊/阴影等情况,使用onnx模型简单轻量部署&#xff0c…

Excel 技巧15 - 在Excel中抠图头像,换背景色(★★)

本文讲了如何在Excel中抠图头像,换背景色。 1,如何在Excel中抠图头像,换背景色 大家都知道在PS中可以很容易抠图头像,换背景色,其实Excel中也可以抠简单的图,换背景色。 ※所用头像图片为百度搜索&#x…

吴恩达深度学习——神经网络介绍

文章内容来自BV11H4y1F7uH,仅为个人学习所用。 文章目录 什么是神经网络引入神经网络神经元激活函数ReLU隐藏单元 用神经网络进行监督学习监督学习与无监督学习举例 什么是神经网络 引入 已经有六个房子的数据集,横轴为房子大小,纵轴为房子…

xctf-comment(Intruder,git恢复,SQL注入,Hex解码)

这题是2018年网鼎杯真题,考察 Burp Suite 的 Intruder 模块去找用户密码,使用 githacker 恢复代码(githack不行),代码审计发现SQL二次注入,尝试SQL注入读取文件内容,读取的是/home/www/.bash_hi…

分布式系统通信解决方案:Netty 与 Protobuf 高效应用

分布式系统通信解决方案:Netty 与 Protobuf 高效应用 一、引言 在现代网络编程中,数据的编解码是系统设计的一个核心问题,特别是在高并发和低延迟的应用场景中,如何高效地序列化和传输数据对于系统的性能至关重要。随着分布式系…