如何学习Transformer架构

Transformer架构自提出以来,在自然语言处理领域引发了革命性的变化。作为一种基于注意力机制的模型,Transformer解决了传统序列模型在并行化和长距离依赖方面的局限性。本文将探讨Transformer论文《Attention is All You Need》与Hugging Face Transformers库之间的关系,并详细介绍如何利用Hugging Face Transformers的代码深入学习Transformer架构。

一、Transformer论文与Hugging Face Transformers库的关系

1. Transformer论文:《Attention is All You Need》

基本信息:

  • 标题Attention is All You Need
  • 作者:Ashish Vaswani等人
  • 发表时间:2017年
  • 会议:NIPS 2017(现称为NeurIPS)

主要内容:

Transformer论文首次提出了一种全新的神经网络架构,彻底摆脱了循环神经网络(RNN)和卷积神经网络(CNN)的限制。其核心创新在于引入了自注意力机制(Self-Attention)多头注意力机制(Multi-Head Attention),使模型能够高效并行化处理序列数据,捕获全局依赖关系。

影响:

Transformer架构的提出极大地推动了自然语言处理的发展,随后衍生出了多种基于Transformer的模型,如BERT、GPT系列、RoBERTa、T5等。这些模型在各种NLP任务中都取得了卓越的表现。

2. Hugging Face Transformers库

基本信息:

  • 名称:Hugging Face Transformers
  • 开发者:Hugging Face公司
  • 性质:开源的深度学习模型库
  • 支持框架:PyTorch、TensorFlow、JAX

主要内容:

Hugging Face Transformers库实现了多种基于Transformer架构的预训练模型,方便开发者在不同任务中应用。这些模型涵盖了自然语言处理、计算机视觉和音频处理等多个领域。

功能特点:

  • 丰富的预训练模型:提供了数以千计的预训练模型,支持多种任务和模态。
  • 简洁的API接口:通过pipeline等高级API,用户可以快速加载模型并应用于实际任务。
  • 多框架支持:兼容PyTorch、TensorFlow和JAX。
  • 社区支持和共享:拥有活跃的开源社区,用户可以分享和获取模型。

3. 二者的关系与区别

联系:

  • 基础架构相同:Hugging Face Transformers库中的模型都是基于Transformer架构,源自《Attention is All You Need》论文。
  • 理论与实践的结合:Transformer论文提供了理论基础和原始模型,Hugging Face Transformers库将这些理论和模型实现为易于使用的代码,并扩展到了更多的任务和应用场景。

区别:

  1. 性质不同

    • Transformer论文:是一篇学术论文,提出了一种新的神经网络架构,侧重于理论和实验验证。
    • Hugging Face Transformers库:是一个开源的软件库,提供了基于Transformer架构的预训练模型和工具,方便实际项目的应用和微调。
  2. 范围不同

    • Transformer论文:重点介绍了原始的Transformer模型,主要用于机器翻译。
    • Transformers库:实现了大量基于Transformer的模型,支持文本分类、问答系统、文本生成、图像处理、语音识别等任务。
  3. 应用目的不同

    • Transformer论文:旨在为学术研究提供新的方向和启发。
    • Transformers库:旨在提供实用的工具和模型,加速模型的开发和部署。

二、利用Hugging Face Transformers代码学习Transformer架构

Transformer架构虽然在理论上相对复杂,但通过阅读和实践Hugging Face Transformers库的代码,可以更直观地理解其工作原理。以下是具体的学习步骤和建议。

1. 理论基础准备

在深入代码之前,建议先熟悉Transformer的理论概念。

  • 阅读原始论文:Attention is All You Need
  • 参考资料
    • The Illustrated Transformer
    • 上面文章的中文翻译
    • Transformer动画演示

2. 搭建学习环境

  • 安装Transformers库

    pip install transformers
    pip install torch  # 如果使用PyTorch
    
  • 克隆源码仓库

    git clone https://github.com/huggingface/transformers.git
    

3. 了解库的整体结构

  • 目录结构

    • src/transformers/models:各模型的实现文件夹。
    • src/transformers/models/bert:BERT模型代码。
    • src/transformers/models/gpt2:GPT-2模型代码。
  • 选择学习的模型

    • BERT:代表编码器架构。
    • GPT-2:代表解码器架构。

4. 深入阅读模型源码

4.1 BERT模型
  • 文件位置src/transformers/models/bert/modeling_bert.py

  • 核心组件

    • BertModel:主模型类。
    • BertEncoder:由多个BertLayer组成的编码器。
    • BertLayer:包含注意力和前馈网络的基础层。
    • BertSelfAttention:自注意力机制的实现。
    • BertSelfOutput:注意力机制的输出处理。
  • 阅读顺序

    1. BertModel:从forward方法开始,理解输入如何通过各个子模块。

    2. BertEncoder和BertLayer:理解编码器的堆叠方式和每一层的操作。

    3. BertSelfAttention:深入了解自注意力的实现,包括querykeyvalue的计算。

    4. 残差连接和LayerNorm:注意每一层的残差连接和归一化过程。

4.2 GPT-2模型
  • 文件位置src/transformers/models/gpt2/modeling_gpt2.py

  • 核心组件

    • GPT2Model:主模型类。
    • GPT2Block:包含注意力和前馈网络的基础块。
    • GPT2Attention:自注意力机制的实现。
  • 注意事项

    GPT-2是解码器架构,与BERT的编码器架构有所不同,可对比学习。

5. 理解核心机制

5.1 自注意力机制(Self-Attention)
  • 关键步骤

    1. 计算querykeyvalue矩阵

    2. 计算注意力得分querykey的点积。

    3. 应用缩放和掩码:缩放注意力得分,应用softmax

    4. 计算注意力输出:注意力得分与value矩阵相乘。

  • 代码位置BertSelfAttention类。

5.2 多头注意力机制(Multi-Head Attention)
  • 实现方式:并行计算多个头的注意力,提升模型的表达能力。

  • 代码位置BertSelfAttention中的多头实现。

5.3 前馈网络(Feed-Forward Network, FFN)
  • 结构:两层线性变换,中间有非线性激活函数(如GELU)。

  • 代码位置BertIntermediateBertOutput类。

5.4 位置编码(Positional Encoding)
  • 实现方式:可学习的绝对位置嵌入,补充序列的位置信息。

  • 代码位置BertEmbeddings类。

6. 实践练习

6.1 运行示例代码
  • 官方示例:在examples目录中,有各种任务的示例代码。

  • 练习建议

    • 文本分类:使用BERT在情感分析任务上进行训练。
    • 文本生成:使用GPT-2进行文本生成,调试参数影响。
6.2 修改和调试代码
  • 实验建议

    • 调整模型超参数:修改层数、隐藏单元数、注意力头数。
    • 尝试新功能:例如,修改激活函数,或添加新的正则化措施。
  • 调试工具:使用IDE的调试功能或插入打印语句,观察模型的内部状态。

7. 结合理论与实现

  • 对照论文公式和代码:将源码中的实现与论文中的公式一一对应,如注意力得分的计算。

  • 绘制计算流程图:帮助理解数据在模型中的流动。

8. 参考资料

  • Hugging Face Transformers文档:https://huggingface.co/transformers/

  • 深入理解Transformer的博客和教程

    • The Annotated Transformer
    • 知乎上关于Transformer的详解

9. 参与社区交流

  • GitHub Issues:查看他人的提问和解答,加深对常见问题的理解。

  • 论坛和讨论组:加入Hugging Face的官方论坛,与社区成员交流经验。

10. 学习建议

  • 循序渐进:逐步深入理解,不要急于求成。

  • 实践为主:多动手实验,加深对理论的理解。

  • 记录心得:将学习过程中遇到的问题和收获记录下来,方便后续复习。

三、总结

通过结合Transformer论文的理论基础和Hugging Face Transformers库的实践代码,能够更全面地理解Transformer架构的精髓。从理论到实践,再从实践回归理论,这种循环往复的学习方式,将有助于深入掌握Transformer及其在各种任务中的应用。

希望本文能对您学习和理解Transformer架构有所帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/956425.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

靠右行驶数学建模分析(2014MCM美赛A题)

笔记 题目 要求分析: 比较规则的性能,分为light和heavy两种情况,性能指的是 a.流量与安全 b. 速度限制等分析左侧驾驶分析智能系统 论文 参考论文 两类规则分析 靠右行驶(第一条)2. 无限制(去掉了第一条…

算法日记6.StarryCoding P52:我们都需要0(异或)

一、题目 二、题解: 1、对于这道题,题意为让我们寻找一个数x使得 b[i]a[i]^x, 并且b[1]^b[2]^b[3]^ b[4]^b[5]....0 2、我们把b[i]给拆开,可以得到 3、又因为^满足结合律,因此,可以把括号给拆开 4、接着…

快速入门:如何注册并使用GPT

文章目录 ProtonMail邮箱步骤 1:访问Proton官网步骤 2:创建ProtonMail账户步骤 3:选择注册免费账户步骤 4:填写邮箱地址和手机号(可选)步骤 5:邮箱验证(必须进行验证)步骤…

嵌入式硬件篇---PID控制

文章目录 前言第一部分:连续PID1.比例(Proportional,P)控制2.积分(Integral,I)控制3.微分(Derivative,D)控制4.PID的工作原理5..实质6.分析7.各种PID控制器P控…

将IDLE里面python环境pyqt5配置的vscode

首先安装pyqt5全套:pip install pyqt5-tools 打开Vscode: 安装第三方扩展:PYQT Integration 成功配置designer.exe的路径【个人安装pyqt5的执行路径】,便可直接打开UI文件,进行编辑。 配置pyuic,如果下图填写方法使用…

LDD3学习9--数据类型和定时器

这部分对应的是第七章和第十一章,因为内容也不是很多,就一起写了。里面的内容基本上就是一个个的点,所以也就一个个点简单总结一下。 1 数据类型 1.1 数据长度 不同操作系统类型长度可能不一样,看图的话最好用u8,u16&…

python http server运行Angular 单页面路由时重定向,解决404问题

问题 当Angular在本地ng server运行时候,可以顺利访问各级路由。 但是运行ng build后,在dist 路径下的打包好的额index.html 必须要在服务器下运行才能加载。 在服务器下我们第一次访问路由页面时是没有问题的,但是尝试刷新页面或手动输入路…

SparkSQL数据源与数据存储

文章目录 1. 大数据分析流程2. Spark SQL数据源2.1 SparkSQL常见数据源2.2 SparkSQL支持的文本格式2.3 加载外部数据源步骤 3. 本地文件系统加载数据3.1 本地文件系统加载JSON格式数据3.1.1 概述3.1.2 案例演示 3.2 本地文件系统加载CSV格式数据3.2.1 概述3.2.2 案例演示 3.3 本…

LLM - 大模型 ScallingLaws 的 CLM 和 MLM 中不同系数(PLM) 教程(2)

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/145188660 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Scalin…

AI agent 在 6G 网络应用,无人机群控场景

AI agent 在 6G 网络应用,无人机群控场景 随着 6G 时代的临近,融合人工智能成为关键趋势。借鉴 IT 行业 AI Agent 应用范式,提出 6G AI Agent 技术框架,包含多模型融合、定制化 Agent 和插件式环境交互理念,构建了涵盖四层结构的框架。通过各层协同实现自主环境感知等能力…

信息奥赛一本通 1168:大整数加法

这道题是一道大整数加法,涉及到高精度的算法,比如说有两个数要进行相加,1111111111111111111111111111111111111112222222222222222222222222222222,那么如果这两个数很大的话我们常用的数据类型是不能进行计算的,那么…

基于YOLOv4与Tkinter的口罩识别系统

往期精彩 基于YOLOv11的番茄成熟度实时检测系统设计与实现 用YOLOv11检测美国手语:挥动手腕的科技魔法 基于YOLOv11模型PyQt的实时鸡行为检测系统研究 OpenCV与YOLO在人脸识别中的应用研究(论文源码) 计算机视觉:农作物病虫害检测系统:基于Y…

机器学习:监督学习与非监督学习

监督学习是利用带有标签的数据进行训练,模型通过学习输入和输出之间的关系来进行预测。也就是说,数据集中既有输入特征,也有对应的输出标签,模型的目标是找到从输入到输出的映射关系。 而无监督学习则使用没有标签的数据进行训练,模型的任务是发现数据中的内在结构或模式…

【unity进阶篇】不同Unity版本对应的C# 版本和API 兼容级别(Api Compatibility Level)选择

考虑到每个人基础可能不一样,且并不是所有人都有同时做2D、3D开发的需求,所以我把 【零基础入门unity游戏开发】 分为成了C#篇、unity通用篇、unity3D篇、unity2D篇。 【C#篇】:主要讲解C#的基础语法,包括变量、数据类型、运算符、…

H3CNE-13-静态路由(二)

1.路由优先级 路由类型DirectOSPFStaticRIP管理距离01060100 2.路由度量 配置示例: 配置接口IP、静态路由(去包、回包) 3.静态路由之路由备份 RTB: ip route-static 192.168.1.0 24 10.0.12.1 ip route-ststic 192.168.1.0 24 20.0.12.1 …

【数据分享】1929-2024年全球站点的逐年平均气温数据(Shp\Excel\无需转发)

气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、湿度等指标,其中又以气温指标最为常用!说到气温数据,最详细的气温数据是具体到气象监测站点的气温数据!本次我们为大家带来的就是具体到气象监…

[Qualcomm]Qualcomm MDM9607 SDK代码下载操作说明

登录Qualcomm CreatePoing Qualcomm CreatePointhttps://createpoint.qti.qua

PID控制算法原理,并用python实现演示

PID算法控制运用在哪些地方? PID:比列(Proportion),积分(Integral),微分(Differential) PID算法可以用来控制温度,压强,流量,化学成分,速度等等。汽车的定速巡航;伺服驱…

C语言之文本加密程序设计

🌟 嗨,我是LucianaiB! 🌍 总有人间一两风,填我十万八千梦。 🚀 路漫漫其修远兮,吾将上下而求索。 文本加密程序设计 摘要:本文设计了一种文本加密程序,旨在提高信息安…

数字图像处理:实验二

任务一: 将不同像素(32、64和256)的原图像放大为像素大 小为1024*1024的图像(图像自选) 要求:1)输出一幅图,该图包含六幅子图,第一排是原图,第 二排是对应放大…