YOLOv5训练长方形图像详解

文章目录

  • YOLOv5训练长方形图像详解
    • 一、引言
    • 二、数据集准备
      • 1、创建文件夹结构
      • 2、标注图像
      • 3、生成标注文件
    • 三、配置文件
      • 1、创建数据集配置文件
      • 2、选择模型配置文件
    • 四、训练模型
      • 1、修改训练参数
      • 2、开始训练
    • 五、使用示例
      • 1、测试模型
      • 2、评估模型
    • 六、总结

YOLOv5训练长方形图像详解

在这里插入图片描述

一、引言

YOLOv5 是一种高效的目标检测算法,广泛应用于各种图像识别任务。然而,当处理长方形图像时,可能会遇到一些特殊问题,如图像尺寸不匹配、标注不准确等。本文将详细介绍如何在 YOLOv5 中训练长方形图像,确保模型能够准确地检测和识别目标。

二、数据集准备

1、创建文件夹结构

首先,需要在 YOLOv5 根目录下创建一个文件夹 VOCData,并在其中创建以下子文件夹:

  • images:存放待标注的图像文件(JPG格式)。
  • Annotations:存放标注后的文件(采用 XML 格式)。
VOCData/
├── images/         # 存放图像文件
├── Annotations/    # 存放标注文件

2、标注图像

使用在线标注工具如 MAKE SENSE 进行标注。标注完成后,将标注文件保存为 XML 格式,并存放在 Annotations 文件夹中。

3、生成标注文件

创建 voc_label.py 文件,将训练集、验证集、测试集生成 YOLO 格式的标注文件,并将数据集路径导入到 train.txtval.txt 文件中。代码如下:

import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ["class1", "class2"]  # 根据实际情况修改类别名称

def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    return x * dw, y * dh, w * dw, h * dh

def convert_annotation(image_id):
    in_file = open('VOCData/Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('VOCData/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    in_file.close()
    out_file.close()

wd = getcwd()
for image_set in sets:
    if not os.path.exists('VOCData/labels/'):
        os.makedirs('VOCData/labels/')
    image_ids = open('VOCData/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open('VOCData/dataSet_path/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(wd + '/VOCData/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

三、配置文件

1、创建数据集配置文件

在 YOLOv5 目录下的 data 文件夹下新建一个 myvoc.yaml 文件,内容如下:

train: D:/Yolov5/yolov5/VOCData/dataSet_path/train.txt
val: D:/Yolov5/yolov5/VOCData/dataSet_path/val.txt

# number of classes
nc: 2

# class names
names: ["class1", "class2"]

确保路径和类别名称与实际情况一致。

2、选择模型配置文件

YOLOv5 有多种配置文件,如 yolov5s.yamlyolov5m.yamlyolov5l.yamlyolov5x.yaml。选择一个合适的配置文件,例如 yolov5x.yaml,并将其复制到 models 文件夹中,重命名为 ddjc_model.yaml,然后修改 nc 为实际的类别数。

四、训练模型

1、修改训练参数

train.py 文件中,找到 def parse_opt(known=False) 函数,修改训练参数。例如:

parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5x', help='initial weights path')
parser.add_argument('--cfg', type=str, default=ROOT / 'models/ddjc_model.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default=ROOT / 'data/myvoc.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--device', default='cuda', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')

2、开始训练

在终端中运行以下命令开始训练:

python train.py --img 640 --batch 16 --epochs 50 --data data/myvoc.yaml --cfg models/ddjc_model.yaml --weights yolov5x.pt --name ddjc_model

五、使用示例

1、测试模型

训练完成后,可以使用 detect.py 文件进行测试。例如:

python detect.py --weights runs/train/ddjc_model/weights/best.pt --img 640 --conf 0.25 --source data/images

2、评估模型

使用 val.py 文件评估模型性能:

python val.py --weights runs/train/ddjc_model/weights/best.pt --data data/myvoc.yaml --img 640

六、总结

本文详细介绍了如何在 YOLOv5 中训练长方形图像,包括数据集准备、标注、配置文件设置和模型训练。通过这些步骤,可以确保模型能够准确地检测和识别长方形图像中的目标。希望本文对您有所帮助。


版权声明:本博客内容为原创,转载请保留原文链接及作者信息。

参考文章

  • Yolov5训练自己的数据集(详细完整版)_yolov5缔宇-CSDN博客
  • 如何制作数据集并基于yolov5训练成模型并部署

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/955700.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

“AI智能防控识别系统:守护安全的“智慧卫士”

在如今这个科技飞速发展的时代,安全问题始终是大家关注的焦点。无论是企业园区、学校校园,还是居民社区,都希望能有一双“慧眼”时刻守护着,及时发现并防范各种安全隐患。而AI智能防控识别系统,就像一位不知疲倦、精准…

使用FFmpeg和Python将短视频转换为GIF的使用指南

使用FFmpeg和Python将短视频转换为GIF的使用指南 在数字时代,GIF动图已成为表达情感和分享幽默的重要媒介。无论是社交媒体上的搞笑片段还是创意项目中的视觉效果,GIF都能迅速抓住观众的注意力。然而,很多人不知道如何将短视频转换为GIF。本…

黑马Java面试教程_P1_导学与准备篇

系列博客目录 文章目录 系列博客目录导学Why?举例 准备篇企业是如何筛选简历的(筛选简历的规则)HR如何筛选简历部门负责人筛选简历 简历注意事项简历整体结构个人技能该如何描述项目该如何描述 应届生该如何找到合适的练手项目项目来源找到项目后,如何深入学习项目…

【前端动效】HTML + CSS 实现打字机效果

目录 1. 效果展示 2. 思路分析 2.1 难点 2.2 实现思路 3. 代码实现 3.1 html部分 3.2 css部分 3.3 完整代码 4. 总结 1. 效果展示 如图所示,这次带来的是一个有趣的“擦除”效果,也可以叫做打字机效果,其中一段文本从左到右逐渐从…

C#学习笔记 --- 基础补充

1.operator 运算符重载:使自定义类可以当做操作数一样进行使用。规则自己定。 2.partial 分部类: 同名方法写在不同位置,可以当成一个类使用。 3.索引器:使自定义类可以像数组一样通过索引值 访问到对应的数据。 4.params 数…

「刘一哥GIS」系列专栏《GRASS GIS零基础入门实验教程(配套案例数据)》专栏上线了

「刘一哥GIS」系列专栏《GRASS GIS零基础入门实验教程》全新上线了,欢迎广大GISer朋友关注,一起探索GIS奥秘,分享GIS价值! 本专栏以实战案例的形式,深入浅出地介绍了GRASS GIS的基本使用方法,用一个个实例讲…

当当网书籍信息爬虫

1.基本理论 1.1概念体系 网络爬虫又称网络蜘蛛、网络蚂蚁、网络机器人等,可以按照我们设置的规则自动化爬取网络上的信息,这些规则被称为爬虫算法。是一种自动化程序,用于从互联网上抓取数据。爬虫通过模拟浏览器的行为,访问网页…

【12】Word:张老师学术论文❗

目录 题目 ​NO2 NO3 NO4 NO5 NO6 NO7.8 题目 NO2 布局→页面设置→纸张:A4→页边距:上下左右边距→文档网格:只指定行网格→版式:页眉和页脚:页脚距边界:1.4cm居中设置论文页码:插入…

RabbitMQ实现延迟消息发送——实战篇

在项目中,我们经常需要使用消息队列来实现延迟任务,本篇文章就向各位介绍使用RabbitMQ如何实现延迟消息发送,由于是实战篇,所以不会讲太多理论的知识,还不太理解的可以先看看MQ的延迟消息的一个实现原理再来看这篇文章…

【PCL】Segmentation 模块—— 欧几里得聚类提取(Euclidean Cluster Extraction)

1、简介 PCL 的 Euclidean Cluster Extraction(欧几里得聚类提取) 是一种基于欧几里得距离的点云聚类算法。它的目标是将点云数据分割成多个独立的簇(clusters),每个簇代表一个独立的物体或结构。该算法通过计算点与点…

ElasticSearch上

安装ElasticSearch Lucene:Java语言的搜索引擎类库,易扩展;高性能(基于倒排索引)Elasticsearch基于Lucene,支持分布式,可水平扩展;提供Restful接口,可被任何语言调用Ela…

GitLab:添加SSH密钥之前,您不能通过SSH来拉取或推送项目代码

1、查看服务器是否配置过 [rootkingbal-ecs-7612 ~]# cd .ssh/ [rootkingbal-ecs-7612 .ssh]# ls authorized_keys id_ed25519 id_ed25519.pub id_rsa id_rsa.pub2、创建密钥 $ ssh-keygen -t rsa -C kingbalkingbal.com # -C 后写你的邮箱 一路回车 3、复制密钥 [rootk…

《目标检测数据集下载地址》

一、引言 在计算机视觉的广袤领域中,目标检测宛如一颗璀璨的明星,占据着举足轻重的地位。它宛如赋予计算机一双锐利的 “眼睛”,使其能够精准识别图像或视频中的各类目标,并确定其位置,以边界框的形式清晰呈现。这项技…

Kibana 控制台中提供语义、向量和混合搜索

作者:来自 Elastic Mark_Laney 想要将常规 Elasticsearch 查询与新的 AI 搜索功能结合起来吗?那么,你不需要连接到某个第三方的大型语言模型(LLM)吗?不。你可以使用 Elastic 的 ELSER 模型来改进现有搜索&a…

Golang Gin系列-3:Gin Framework的项目结构

在Gin教程的第3篇,我们将讨论如何设置你的项目。这不仅仅是把文件扔得到处都是,而是要对所有东西的位置做出明智的选择。相信我,这些东西很重要。如果你做得对,你的项目会更容易处理。当你以后不再为了找东西或添加新功能而绞尽脑…

程序设计:排版、检验报告的上下标解决几种办法

【啰嗦两句】 本文重点在于提供几个针对排版文档、各种检验报告系统等程序设计时,遇到的上下标录入、绘制展示等问题的应对办法,但是准确地说,并没有非常优秀的方案。 【上下标难题】 一般的行业或许对上下标并没有严格要求,多数…

TCP 重传演进:TCP RACK Timer 能替代 RTO 吗

本文的建议适用于想改变 TCP 行为的新协议设计,还是那句话,不要抄 TCP 做 yet another TCP。 RTO 一直是 TCP 传输过程所要尽量避免的,因为它会将状态带入 Loss 进而 Go-Back-N,这是一个昂贵的操作。But 在 Fast-Retransmit 被引…

PCL 新增自定义点类型【2025最新版】

目录 一、自定义点类型1、前言2、定义方法3、代码示例二、合并现有类型三、点云按时间渲染1、CloudCompare渲染2、PCL渲染博客长期更新,本文最近更新时间为:2025年1月18日。 一、自定义点类型 1、前言 PCL库自身定义了很多点云类型,但是在使用的时候时如果要使用自己定义的…

Python操作Excel——openpyxl使用笔记(5)

5 其他操作 5.1 合并单元格 有些Excel表格存在合并多个单元格的情况,此时可以使用工作表的merge_cells函数,例如合并第1~2行和1~2列: import openpyxl from openpyxl.comments import Comment wb openpyxl.load_workbook(./test.xlsx) w…

Linux简介和环境搭建

Linux 介绍和环境搭建 1、发行版本 Linux 操作系统有多个主流发行版本,每个版本根据不同的目标、特点和使用场景为用户提供了不同的功能和体验。 Ubuntu • 特点:Ubuntu 是最为人熟知的 Linux 发行版之一,强调易用性和用户友好性&#xff…