【Flink系列】4. Flink运行时架构

4. Flink运行时架构

4.1 系统架构

Flink运行时架构——Standalone会话模式为例
在这里插入图片描述

1)作业管理器(JobManager)

JobManager是一个Flink集群中任务管理和调度的核心,是控制应用执行的主进程。也就是说,每个应用都应该被唯一的JobManager所控制执行。
JobManger又包含3个不同的组件。

(1)JobMaster

JobMaster是JobManager中最核心的组件,负责处理单独的作业(Job)。所以JobMaster和具体的Job是一一对应的,多个Job可以同时运行在一个Flink集群中, 每个Job都有一个自己的JobMaster。需要注意在早期版本的Flink中,没有JobMaster的概念;而JobManager的概念范围较小,实际指的就是现在所说的JobMaster。
在作业提交时,JobMaster会先接收到要执行的应用。JobMaster会把JobGraph转换成一个物理层面的数据流图,这个图被叫作“执行图”(ExecutionGraph),它包含了所有可以并发执行的任务。JobMaster会向资源管理器(ResourceManager)发出请求,申请执行任务必要的资源。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的TaskManager上。
而在运行过程中,JobMaster会负责所有需要中央协调的操作,比如说检查点(checkpoints)的协调。

(2)资源管理器(ResourceManager)

ResourceManager主要负责资源的分配和管理,在Flink 集群中只有一个。所谓“资源”,主要是指TaskManager的任务槽(task slots)。任务槽就是Flink集群中的资源调配单元,包含了机器用来执行计算的一组CPU和内存资源。每一个任务(Task)都需要分配到一个slot上执行。
这里注意要把Flink内置的ResourceManager和其他资源管理平台(比如YARN)的ResourceManager区分开。

(3)分发器(Dispatcher)

Dispatcher主要负责提供一个REST接口,用来提交应用,并且负责为每一个新提交的作业启动一个新的JobMaster 组件。Dispatcher也会启动一个Web UI,用来方便地展示和监控作业执行的信息。Dispatcher在架构中并不是必需的,在不同的部署模式下可能会被忽略掉。

2)任务管理器(TaskManager)

TaskManager是Flink中的工作进程,数据流的具体计算就是它来做的。Flink集群中必须至少有一个TaskManager;每一个TaskManager都包含了一定数量的任务槽(task slots)。Slot是资源调度的最小单位,slot的数量限制了TaskManager能够并行处理的任务数量。
启动之后,TaskManager会向资源管理器注册它的slots;收到资源管理器的指令后,TaskManager就会将一个或者多个槽位提供给JobMaster调用,JobMaster就可以分配任务来执行了。
在执行过程中,TaskManager可以缓冲数据,还可以跟其他运行同一应用的TaskManager交换数据。

4.2 核心概念

4.2.1 并行度(Parallelism)

1)并行子任务和并行度

当要处理的数据量非常大时,我们可以把一个算子操作,“复制”多份到多个节点,数据来了之后就可以到其中任意一个执行。这样一来,一个算子任务就被拆分成了多个并行的“子任务”(subtasks),再将它们分发到不同节点,就真正实现了并行计算。
在Flink执行过程中,每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中完全独立地执行。
在这里插入图片描述

一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。这样,包含并行子任务的数据流,就是并行数据流,它需要多个分区(stream partition)来分配并行任务。一般情况下,一个流程序的并行度,可以认为就是其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。
例如:如上图所示,当前数据流中有source、map、window、sink四个算子,其中sink算子的并行度为1,其他算子的并行度都为2。所以这段流处理程序的并行度就是2。

2)并行度的设置

在Flink中,可以用不同的方法来设置并行度,它们的有效范围和优先级别也是不同的。

(1)代码中设置

我们在代码中,可以很简单地在算子后跟着调用setParallelism()方法,来设置当前算子的并行度:

stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);

这种方式设置的并行度,只针对当前算子有效。
另外,我们也可以直接调用执行环境的setParallelism()方法,全局设定并行度:

env.setParallelism(2);

这样代码中所有算子,默认的并行度就都为2了。我们一般不会在程序中设置全局并行度,因为如果在程序中对全局并行度进行硬编码,会导致无法动态扩容。
这里要注意的是,由于keyBy不是算子,所以无法对keyBy设置并行度。

(2)提交应用时设置

在使用flink run命令提交应用时,可以增加-p参数来指定当前应用程序执行的并行度,它的作用类似于执行环境的全局设置:

bin/flink run –p 2 –c com.atguigu.wc.SocketStreamWordCount 
./FlinkTutorial-1.0-SNAPSHOT.jar

如果我们直接在Web UI上提交作业,也可以在对应输入框中直接添加并行度。
在这里插入图片描述

(3)配置文件中设置

我们还可以直接在集群的配置文件flink-conf.yaml中直接更改默认并行度:

parallelism.default: 2

这个设置对于整个集群上提交的所有作业有效,初始值为1。无论在代码中设置、还是提交时的-p参数,都不是必须的;所以在没有指定并行度的时候,就会采用配置文件中的集群默认并行度。在开发环境中,没有配置文件,默认并行度就是当前机器的CPU核心数。

4.2.2 算子链(Operator Chain)

1)算子间的数据传输

在这里插入图片描述

一个数据流在算子之间传输数据的形式可以是一对一(one-to-one)的直通(forwarding)模式,也可以是打乱的重分区(redistributing)模式,具体是哪一种形式,取决于算子的种类。

(1)一对一(One-to-one,forwarding)

这种模式下,数据流维护着分区以及元素的顺序。比如图中的source和map算子,source算子读取数据之后,可以直接发送给map算子做处理,它们之间不需要重新分区,也不需要调整数据的顺序。这就意味着map 算子的子任务,看到的元素个数和顺序跟source 算子的子任务产生的完全一样,保证着“一对一”的关系。map、filter、flatMap等算子都是这种one-to-one的对应关系。这种关系类似于Spark中的窄依赖。

(2)重分区(Redistributing)

在这种模式下,数据流的分区会发生改变。比如图中的map和后面的keyBy/window算子之间,以及keyBy/window算子和Sink算子之间,都是这样的关系。
每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的下游目标任务。这些传输方式都会引起重分区的过程,这一过程类似于Spark中的shuffle。

2)合并算子链

在Flink中,并行度相同的一对一(one to one)算子操作,可以直接链接在一起形成一个“大”的任务(task),这样原来的算子就成为了真正任务里的一部分,如下图所示。每个task会被一个线程执行。这样的技术被称为“算子链”(Operator Chain)。
在这里插入图片描述

上图中Source和map之间满足了算子链的要求,所以可以直接合并在一起,形成了一个任务;因为并行度为2,所以合并后的任务也有两个并行子任务。这样,这个数据流图所表示的作业最终会有5个任务,由5个线程并行执行。
将算子链接成task是非常有效的优化:可以减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量。
Flink默认会按照算子链的原则进行链接合并,如果我们想要禁止合并或者自行定义,也可以在代码中对算子做一些特定的设置:

// 禁用算子链
.map(word -> Tuple2.of(word, 1L)).disableChaining();

// 从当前算子开始新链
.map(word -> Tuple2.of(word, 1L)).startNewChain()

4.2.3 任务槽(Task Slots)

1)任务槽(Task Slots)

Flink中每一个TaskManager都是一个JVM进程,它可以启动多个独立的线程,来并行执行多个子任务(subtask)。
很显然,TaskManager的计算资源是有限的,并行的任务越多,每个线程的资源就会越少。那一个TaskManager到底能并行处理多少个任务呢?为了控制并发量,我们需要在TaskManager上对每个任务运行所占用的资源做出明确的划分,这就是所谓的任务槽(task slots)。
每个任务槽(task slot)其实表示了TaskManager拥有计算资源的一个固定大小的子集。这些资源就是用来独立执行一个子任务的。
任务槽

2)任务槽数量的设置

在Flink的/opt/module/flink-1.17.0/conf/flink-conf.yaml配置文件中,可以设置TaskManager的slot数量,默认是1个slot。

taskmanager.numberOfTaskSlots: 8

需要注意的是,slot目前仅仅用来隔离内存,不会涉及CPU的隔离。在具体应用时,可以将slot数量配置为机器的CPU核心数,尽量避免不同任务之间对CPU的竞争。这也是开发环境默认并行度设为机器CPU数量的原因。

3)任务对任务槽的共享

在这里插入图片描述

默认情况下,Flink是允许子任务共享slot的。如果我们保持sink任务并行度为1不变,而作业提交时设置全局并行度为6,那么前两个任务节点就会各自有6个并行子任务,整个流处理程序则有13个子任务。如上图所示,只要属于同一个作业,那么对于不同任务节点(算子)的并行子任务,就可以放到同一个slot上执行。所以对于第一个任务节点source→map,它的6个并行子任务必须分到不同的slot上,而第二个任务节点keyBy/window/apply的并行子任务却可以和第一个任务节点共享slot。
当我们将资源密集型和非密集型的任务同时放到一个slot中,它们就可以自行分配对资源占用的比例,从而保证最重的活平均分配给所有的TaskManager。
slot共享另一个好处就是允许我们保存完整的作业管道。这样一来,即使某个TaskManager出现故障宕机,其他节点也可以完全不受影响,作业的任务可以继续执行。
当然,Flink默认是允许slot共享的,如果希望某个算子对应的任务完全独占一个slot,或者只有某一部分算子共享slot,我们也可以通过设置“slot共享组”手动指定:

.map(word -> Tuple2.of(word, 1L)).slotSharingGroup("1");

这样,只有属于同一个slot共享组的子任务,才会开启slot共享;不同组之间的任务是完全隔离的,必须分配到不同的slot上。在这种场景下,总共需要的slot数量,就是各个slot共享组最大并行度的总和。
4.2.4 任务槽和并行度的关系
任务槽和并行度都跟程序的并行执行有关,但两者是完全不同的概念。简单来说任务槽是静态的概念,是指TaskManager具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots进行配置;而并行度是动态概念,也就是TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。
举例说明:假设一共有3个TaskManager,每一个TaskManager中的slot数量设置为3个,那么一共有9个task slot,表示集群最多能并行执行9个同一算子的子任务。
而我们定义word count程序的处理操作是四个转换算子:
source→ flatmap→ reduce→ sink
当所有算子并行度相同时,容易看出source和flatmap可以合并算子链,于是最终有三个任务节点。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

通过这个例子也可以明确地看到,整个流处理程序的并行度,就应该是所有算子并行度中最大的那个,这代表了运行程序需要的slot数量。

4.3 作业提交流程

4.3.1 Standalone会话模式作业提交流程

在这里插入图片描述

4.3.2 逻辑流图/作业图/执行图/物理流图

我们已经彻底了解了由代码生成任务的过程,现在来做个梳理总结。
逻辑流图(StreamGraph)→ 作业图(JobGraph)→ 执行图(ExecutionGraph)→ 物理图(Physical Graph)。
在这里插入图片描述

1)逻辑流图(StreamGraph)

这是根据用户通过 DataStream API编写的代码生成的最初的DAG图,用来表示程序的拓扑结构。这一步一般在客户端完成。

2)作业图(JobGraph)

StreamGraph经过优化后生成的就是作业图(JobGraph),这是提交给 JobManager 的数据结构,确定了当前作业中所有任务的划分。主要的优化为:将多个符合条件的节点链接在一起合并成一个任务节点,形成算子链,这样可以减少数据交换的消耗。JobGraph一般也是在客户端生成的,在作业提交时传递给JobMaster。
我们提交作业之后,打开Flink自带的Web UI,点击作业就能看到对应的作业图。
在这里插入图片描述

3)执行图(ExecutionGraph)

JobMaster收到JobGraph后,会根据它来生成执行图(ExecutionGraph)。ExecutionGraph是JobGraph的并行化版本,是调度层最核心的数据结构。与JobGraph最大的区别就是按照并行度对并行子任务进行了拆分,并明确了任务间数据传输的方式。

4)物理图(Physical Graph)

JobMaster生成执行图后,会将它分发给TaskManager;各个TaskManager会根据执行图部署任务,最终的物理执行过程也会形成一张“图”,一般就叫作物理图(Physical Graph)。这只是具体执行层面的图,并不是一个具体的数据结构。
物理图主要就是在执行图的基础上,进一步确定数据存放的位置和收发的具体方式。有了物理图,TaskManager就可以对传递来的数据进行处理计算了。

4.3.3 Yarn应用模式作业提交流程

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/955127.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

thinkphp6 + redis实现大数据导出excel超时或内存溢出问题解决方案

redis下载安装(window版本) 参考地址:https://blog.csdn.net/Ci1693840306/article/details/144214215 php安装redis扩展 参考链接:https://blog.csdn.net/jianchenn/article/details/106144313 解决思路:&#xff0…

HTML中最基本的东西

本文内容的标签,将是看懂HTML的最基本之基本 ,是跟您在写文章时候一样内容。一般想掌握极其容易,但是也要懂得如何使用,过目不忘,为手熟尔。才是我们学习的最终目的。其实边看边敲都行,或者是边看边复制粘贴…

【大前端】Vue3 工程化项目使用详解

目录 一、前言 二、前置准备 2.1 环境准备 2.1.1 create-vue功能 2.1.2 nodejs环境 2.1.3 配置nodejs的环境变量 2.1.4 更换安装包的源 三、工程化项目创建与启动过程 3.1 创建工程化项目 3.2 项目初始化 3.3 项目启动 3.4 核心文件说明 四、VUE两种不同的API风格 …

-bash: /java: cannot execute binary file

在linux安装jdk报错 -bash: /java: cannot execute binary file 原因是jdk安装包和linux的不一致 程序员的面试宝典,一个免费的刷题平台

业务幂等性技术架构体系之消息幂等深入剖析

在系统中当使用消息队列时,无论做哪种技术选型,有很多问题是无论如何也不能忽视的,如:消息必达、消息幂等等。本文以典型的RabbitMQ为例,讲解如何保证消息幂等的可实施解决方案,其他MQ选型均可参考。 一、…

RustDesk ID更新脚本

RustDesk ID更新脚本 此PowerShell脚本自动更新RustDesk ID和密码,并将信息安全地存储在Bitwarden中。 特点 使用以下选项更新RustDesk ID: 使用系统主机名生成一个随机的9位数输入自定义值 为RustDesk生成新的随机密码将RustDesk ID和密码安全地存储…

QT开发技术 【基于TinyXml2的对类进行序列化和反序列化】一

一、对TinyXml2 进行封装 使用宏 实现序列化和反序列化 思路: 利用宏增加一个类函数,使用序列化器调用函数进行序列化 封装宏示例 #define XML_SERIALIZER_BEGIN(ClassName) \ public: \virtual void ToXml(XMLElement* parentElem, bool bSerialize …

金仓Kingbase客户端KStudio报OOM:Java heap space socketTimeout

找到Kingbase\ES\V8\KESRealPro\V008R006C006B0021\ClientTools\guitools\KStudio\KStudio.ini 修改JVM参数: 默认值: -Xms512m -Xmx1024m 改为: -Xms1024m -Xmx2048m -XX:MaxPermSize512m SQL查询报错:An I/O error occurred …

Redis--21--大Key问题解决方案

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言Redis--20--大Key问题解析 一、如何发现Redis大Key1. 使用Redis命令行工具**MEMORY USAGE****RANDOMKEY****DEBUG OBJECT****SCAN命令****redis-cli 工具&#…

【进程与线程】进程的状态

在操作系统中,进程是执行中的程序实例。进程在其生命周期中会经历不同的状态,操作系统根据进程的执行情况和资源调度,将进程划分为多个状态。 这些状态帮助操作系统更加高效地管理 CPU 和系统资源。 进程的状态:就绪态&#xff0…

K8S开启/关闭审计日志

K8S默认禁用审计 开启/关闭 k8s 审计日志 默认 Kubernetes 集群不会输出审计日志信息。通过以下配置,可以开启 Kubernetes 的审计日志功能。 准备审计日志的 Policy 文件配置 API 服务器,开启审计日志重启并验证 准备审计日志 Policy 文件 apiVersio…

nginx: [emerg] bind() to 0.0.0.0:80 failed 端口被占用

nginx: [emerg] bind() to 0.0.0.0:80 failed (10013: An attempt was made to access a socket in a way forbidden by its access permissions) 查看被占用的端口 被系统占用了 HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services/HTTP 然后再进入nginx文件夹目录下…

vue2 web 多标签输入框 elinput是否当前焦点

又来分享一点点工作积累及解决方案 产品中需要用户输入一些文字后按下回车键生成标签来显示在页面上&#xff0c;经过尝试与改造完成如下&#xff1a; <template><div class"tags-view" click"beginInput"><el-tag :key"index" …

vLLM私有化部署大语言模型LLM

目录 一、vLLM介绍 二、安装vLLM 1、安装环境 2、安装步骤 三、运行vLLM 1、运行方式 2、切换模型下载源 3、运行本地已下载模型 四、通过http访问vLLM 一、vLLM介绍 vLLM&#xff08;官方网址&#xff1a;https://www.vllm.ai&#xff09;是一种用于大规模语言模型&#x…

STM32的集成开发环境STM32CubeIDE安装

STM32CubeIDE - STM32的集成开发环境 - 意法半导体STMicroelectronics

硬件学习笔记--31 IEC62053-21相关内容介绍

IEC 62053-21是一项由国际电工委员会&#xff08;International Electrotechnical Commission&#xff0c;简称IEC&#xff09;发布的国际标准&#xff0c;全称为《交流电能测量设备&#xff08;a.c.&#xff09;-特殊要求-第21部分&#xff1a;静止式有功能量计量表&#xff0…

C++类与对象(一)—学习记录

序言&#xff1a;要想开发一款成功的应用程序&#xff0c;其开发者必须充分了解并实现用户的需求。作为一个设计良好的类&#xff0c;既要有直观且易于使用的接口&#xff0c;也必须具备高效的实现过程。 一、类与对象基本概念 面向对象程序设计的主要特点为抽象、封装、继承与…

七大排序算法

文章目录 排序的概念及引用1.插入排序2.希尔排序(缩小增量排序)3.选择排序4.堆排序5.冒泡排序6.快速排序7.归并排序8.代码排序部分的测试9.代码加效果大致测试时间&#xff08;仅供参考&#xff09; 排序的概念及引用 排序:将数据按照特定的规律排成递增或递减的操作 稳定性:…

Windows 蓝牙驱动开发-蓝牙设备栈

蓝牙设备栈 蓝牙驱动程序堆栈包含 Microsoft 为蓝牙协议提供支持的核心部分。 有了这个堆栈&#xff0c;已启用蓝牙的设备可以彼此定位并建立连接。 在此类连接中&#xff0c;设备可以通过各种应用程序交换数据并彼此交互。 下图显示了蓝牙驱动程序堆栈中的模块&#xff0c;以…

C# 获取PDF文档中的字体信息(字体名、大小、颜色、样式等

在设计和出版行业中&#xff0c;字体的选择和使用对最终作品的质量有着重要影响。然而&#xff0c;有时我们可能会遇到包含未知字体的PDF文件&#xff0c;这使得我们无法准确地复制或修改文档。获取PDF中的字体信息可以解决这个问题&#xff0c;让我们能够更好地处理这些文件。…