Pytorch|YOLO

  • 🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type='cuda')

2. 导入数据

import pathlib

data_dir = "./data/weather_photos/"
data_dir = pathlib.Path(data_dir)

# 获取所有子目录路径
data_paths = list(data_dir.glob('*'))

# 使用 path.parts 获取正确的目录名称
classeNames = [path.parts[-1] for path in data_paths]
print(classeNames)

['cloudy', 'rain', 'shine', 'sunrise']

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("./data/weather_photos/",transform=train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ./data/weather_photos/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
total_data.class_to_idx

{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

(<torch.utils.data.dataset.Subset at 0x19600429450>,
 <torch.utils.data.dataset.Subset at 0x196004297e0>)

batch_size = 4

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

Shape of X [N, C, H, W]:  torch.Size([4, 3, 224, 224])
Shape of y:  torch.Size([4]) torch.int64

二、搭建包含C3模块的模型

📌K同学啊提示:是否可以尝试通过增加/调整C3模块与Conv模块来提高准确率?

1. 搭建模型

import torch.nn.functional as F

def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

class model_K(nn.Module):
    def __init__(self):
        super(model_K, self).__init__()
        
        # 卷积模块
        self.Conv = Conv(3, 32, 3, 2) 
        
        # C3模块1
        self.C3_1 = C3(32, 64, 3, 2)
        
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=802816, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv(x)
        x = self.C3_1(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
model = model_K().to(device)
model

Using cuda device

model_K(
  (Conv): Conv(
    (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_1): C3(
    (cv1): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (1): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (2): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (classifier): Sequential(
    (0): Linear(in_features=802816, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)

2. 查看模型详情

# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 32, 112, 112]             864
       BatchNorm2d-2         [-1, 32, 112, 112]              64
              SiLU-3         [-1, 32, 112, 112]               0
              Conv-4         [-1, 32, 112, 112]               0
            Conv2d-5         [-1, 32, 112, 112]           1,024
       BatchNorm2d-6         [-1, 32, 112, 112]              64
              SiLU-7         [-1, 32, 112, 112]               0
              Conv-8         [-1, 32, 112, 112]               0
            Conv2d-9         [-1, 32, 112, 112]           1,024
      BatchNorm2d-10         [-1, 32, 112, 112]              64
             SiLU-11         [-1, 32, 112, 112]               0
             Conv-12         [-1, 32, 112, 112]               0
           Conv2d-13         [-1, 32, 112, 112]           9,216
      BatchNorm2d-14         [-1, 32, 112, 112]              64
             SiLU-15         [-1, 32, 112, 112]               0
             Conv-16         [-1, 32, 112, 112]               0
       Bottleneck-17         [-1, 32, 112, 112]               0
           Conv2d-18         [-1, 32, 112, 112]           1,024
      BatchNorm2d-19         [-1, 32, 112, 112]              64
             SiLU-20         [-1, 32, 112, 112]               0
             Conv-21         [-1, 32, 112, 112]               0
           Conv2d-22         [-1, 32, 112, 112]           9,216
      BatchNorm2d-23         [-1, 32, 112, 112]              64
             SiLU-24         [-1, 32, 112, 112]               0
             Conv-25         [-1, 32, 112, 112]               0
       Bottleneck-26         [-1, 32, 112, 112]               0
           Conv2d-27         [-1, 32, 112, 112]           1,024
      BatchNorm2d-28         [-1, 32, 112, 112]              64
             SiLU-29         [-1, 32, 112, 112]               0
             Conv-30         [-1, 32, 112, 112]               0
           Conv2d-31         [-1, 32, 112, 112]           9,216
      BatchNorm2d-32         [-1, 32, 112, 112]              64
             SiLU-33         [-1, 32, 112, 112]               0
             Conv-34         [-1, 32, 112, 112]               0
       Bottleneck-35         [-1, 32, 112, 112]               0
           Conv2d-36         [-1, 32, 112, 112]           1,024
      BatchNorm2d-37         [-1, 32, 112, 112]              64
             SiLU-38         [-1, 32, 112, 112]               0
             Conv-39         [-1, 32, 112, 112]               0
           Conv2d-40         [-1, 64, 112, 112]           4,096
      BatchNorm2d-41         [-1, 64, 112, 112]             128
             SiLU-42         [-1, 64, 112, 112]               0
             Conv-43         [-1, 64, 112, 112]               0
               C3-44         [-1, 64, 112, 112]               0
           Linear-45                  [-1, 100]      80,281,700
             ReLU-46                  [-1, 100]               0
           Linear-47                    [-1, 4]             404
================================================================
Total params: 80,320,536
Trainable params: 80,320,536
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 150.06
Params size (MB): 306.40
Estimated Total Size (MB): 457.04
----------------------------------------------------------------

三、 训练模型

1. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

2. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

3. 正式训练

model.train()model.eval()训练营往期文章中有详细的介绍。

📌如果将优化器换成 SGD 会发生什么呢?请自行探索接下来发生的诡异事件的原因

import copy

optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数

epochs     = 20

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)

epoch_test_acc, epoch_test_loss
(0.9333333333333333, 0.31915266352798577)
  • 前期准备:首先设置 GPU,如果设备支持则使用 GPU,否则使用 CPU。然后导入数据,对数据进行预处理,包括数据增强和归一化等操作。最后划分数据集,将数据集分为训练集和测试集,并创建数据加载器。
  • 搭建模型:搭建了一个包含 C3 模块的自定义模型,模型由卷积层、C3 模块和全连接层组成。其中 C3 模块由多个瓶颈层组成,可以提高模型的准确率。
  • 训练模型:编写了训练函数和测试函数,分别用于训练和测试模型。在训练过程中,使用 Adam 优化器和交叉熵损失函数,对模型进行了 20 个 epoch 的训练,并保存了最佳模型。
  • 结果可视化:对训练和测试结果进行了可视化,包括准确率和损失函数的变化曲线。最后,使用最佳模型对测试集进行测试,得到了最终的准确率和损失函数值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/954915.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2025.1.15——六、SQL结构【❤sqlmap❤】

一、打开靶机&#xff0c;整理已知信息 查看页面信息&#xff0c;提示”MySQL结构”&#xff0c;所以为sql注入&#xff0c;两种思路&#xff1a;①手工注入&#xff1b;②sqlmap 二、手工注入解题 step 1&#xff1a;查看注入类型 键入&#xff1a;1 键入&#xff1a;1键入…

螺旋矩阵探讨

文章目录 54.螺旋矩阵59.螺旋矩阵II 54.螺旋矩阵 59.螺旋矩阵 II 54.螺旋矩阵 总体的思路分析&#xff1a; 顺时针&#xff0c;先遍历右边&#xff0c;再下面&#xff0c;再往左&#xff0c;再向上&#xff0c;然后再缩小一圈范围即可 原本的代码情况 class Solution:def spi…

Java IDEA中Gutter Icons图标的含义

前些天发现了一个蛮有意思的人工智能学习网站,8个字形容一下"通俗易懂&#xff0c;风趣幽默"&#xff0c;感觉非常有意思,忍不住分享一下给大家。 &#x1f449;点击跳转到教程 前言&#xff1a; 很多人刚开始用IDEA来学习编程&#xff0c;会发现下面这些图标。 但是…

计算机网络 (46)简单网络管理协议SNMP

前言 简单网络管理协议&#xff08;SNMP&#xff0c;Simple Network Management Protocol&#xff09;是一种用于在计算机网络中管理网络节点的标准协议。 一、概述 SNMP是基于TCP/IP五层协议中的应用层协议&#xff0c;它使网络管理员能够管理网络效能&#xff0c;发现并解决网…

掌握C语言内存布局:数据存储的智慧之旅

大家好&#xff0c;这里是小编的博客频道 小编的博客&#xff1a;就爱学编程 很高兴在CSDN这个大家庭与大家相识&#xff0c;希望能在这里与大家共同进步&#xff0c;共同收获更好的自己&#xff01;&#xff01;&#xff01; 目录 引言正文一、数据类型介绍1.内置类型2.自定义…

【C++篇】红黑树的实现

目录 前言&#xff1a; 一&#xff0c;红黑树的概念 1.1&#xff0c;红黑树的规则 1.2&#xff0c;红黑树的最长路径 1.3&#xff0c;红黑树的效率分析 二&#xff0c;红黑树的实现 2.1&#xff0c;红黑树的结构 2.2&#xff0c;红黑树的插入 2.2.1&#xff0c;大致过程…

【MySQL】使用C语言链接

&#x1f308; 个人主页&#xff1a;Zfox_ &#x1f525; 系列专栏&#xff1a;MySQL 目录 一&#xff1a;&#x1f525; MySQL connect &#x1f98b; Connector / C 使用&#x1f98b; mysql 接口介绍&#x1f98b; 完整代码样例 二&#xff1a;&#x1f525; 共勉 一&#…

音视频入门基础:RTP专题(4)——FFmpeg源码中,判断某文件是否为SDP文件的实现

一、引言 执行《音视频入门基础&#xff1a;RTP专题&#xff08;2&#xff09;——使用FFmpeg命令生成RTP流》中的“媒体文件转推RTP的FFmpeg命令”会生成一个SDP文件&#xff0c;该文件内容如下&#xff1a; v0 o- 0 0 IN IP4 127.0.0.1 sNo Name t0 0 atool:libavformat 61…

SSM项目简单的增删改查

目录 一、表 二、创建项目 1.创建mavenJavaWeb项目 2.补齐目录 3.导入依赖 三、创建包结构 四、实体类 五、spring框架 1.service接口和实现类 (1)service接口 (2)实现类 2.applicationContext.xml配置文件 六、spring整合springMVC 1.web.xml 2.spring-mvc.xml …

【Vim Masterclass 笔记13】第 7 章:Vim 核心操作之——文本对象与宏操作 + S07L28:Vim 文本对象

文章目录 Section 7&#xff1a;Text Objects and MacrosS07L28 Text Objects1 文本对象的含义2 操作文本对象的基本语法3 操作光标所在的整个单词4 删除光标所在的整个句子5 操作光标所在的整个段落6 删除光标所在的中括号内的文本7 删除光标所在的小括号内的文本8 操作尖括号…

el-table多级表头和列单元格合并

1、表格结构 <el-table:data"dialogForm.tableData"stripe:border"true":span-method"arraySpanMethod"><!-- 日期列 --><el-table-column prop"time" label"日期" align"center" /><!-- 重…

工程水印相机结合图纸,真实现场时间地点,如何使用水印相机,超简单方法只教一次!

在工程管理领域&#xff0c;精准记录现场信息至关重要。水印相机拍照功能&#xff0c;为工程人员提供了强大的现场信息记录工具&#xff0c;助力工程管理和统计工程量&#xff0c;更可以将图片分享到电脑、分享给同事&#xff0c;协同工作。 一、打开图纸 打开手机版CAD快速看图…

uniApp开通uniPush1.0个推,SpringBoot集成uniPush1.0个推

uniApp开通unipush1.0个推&#xff0c;SpringBoot程序集成 一、APP开通unipush1.0个推(商户App源码仅支持1.0个推) 1.app模块配置开通推送 2.应用开通推送 3.开通后点击消息推送菜单会看到如下页面 完成以上步骤后 此时android 仅支持在线推送。 4.配置各厂商离线推送 暂未…

升级 SpringBoot3 全项目讲解 — 为什么 SpringBoot3 应该抛弃 Maven,搭配 Gradle 来使用?

学会这款 &#x1f525;全新设计的 Java 脚手架 &#xff0c;从此面试不再怕&#xff01; 随着 Spring Boot 3 的发布&#xff0c;许多开发者开始考虑如何将现有项目升级到最新版本。Spring Boot 3 带来了许多新特性&#xff0c;包括对 Java 17 的支持、更好的性能优化以及对 G…

Yolov8 目标检测剪枝学习记录

最近在进行YOLOv8系列的轻量化&#xff0c;目前在网络结构方面的优化已经接近极限了&#xff0c;所以想要学习一下模型剪枝是否能够进一步优化模型的性能 这里主要参考了torch-pruning的基本使用&#xff0c;v8模型剪枝&#xff0c;Jetson nano部署剪枝YOLOv8 下面只是记录一个…

【深度学习】关键技术-激活函数(Activation Functions)

激活函数&#xff08;Activation Functions&#xff09; 激活函数是神经网络的重要组成部分&#xff0c;它的作用是将神经元的输入信号映射到输出信号&#xff0c;同时引入非线性特性&#xff0c;使神经网络能够处理复杂问题。以下是常见激活函数的种类、公式、图形特点及其应…

图数据库 | 18、高可用分布式设计(中)

上文我们聊了在设计高性能、高可用图数据库的时候&#xff0c;从单实例、单节点出发&#xff0c;一般有3种架构演进选项&#xff1a;主备高可用&#xff0c;今天我们具体讲讲分布式共识&#xff0c;以及大规模水平分布式。 主备高可用、分布式共识、大规模水平分布式&#xff…

Oracle 终止正在执行的SQL

目录 一. 背景二. 操作简介三. 投入数据四. 效果展示 一. 背景 项目中要求进行性能测试&#xff0c;需要向指定的表中投入几百万条数据。 在数据投入的过程中发现投入的数据不对&#xff0c;需要紧急停止SQL的执行。 二. 操作简介 &#x1f449;需要DBA权限&#x1f448; ⏹…

Datawhale组队学习笔记task1——leetcode面试题

文章目录 写在前面刷题流程刷题技巧 Day1题目1、0003.无重复字符的最长子串解答&#xff1a;2.00004 寻找两个正序数组的中位数解答&#xff1a;3.0005.最长回文子串解答4.0008.字符串转换整数解答&#xff1a; Day2题目1.0151.反转字符串中的单词解答2.0043.字符串相乘解答3.0…

K3二开:在工业老单工具栏增加按钮,实现打印锐浪报表

在上次实现用GridRepot报表实现打印任务单后&#xff0c;在想着能不能给将生产任务单原来要通过点击菜单栏&#xff0c;打印任务单的功能&#xff0c;在工具栏上也增加按钮实现&#xff0c;这样就不需要多点了。 原本是需要点击菜单栏才能实现的 现在在工具栏上增加按钮实现同…